scholarly journals DEVELOPMENT OF CIPROFLOXACIN LOADED THROAT PAINT FOR THE TREATMENT OF STREP THROAT INFECTION

Author(s):  
RAHUL KUMAR SINGH ◽  
KUMARI SUNAINA ◽  
AMIT KUMAR DUBEY ◽  
NARENDRA YADAV

Objective: This study is to enhance the solubility and sustained release of ciprofloxacin (CPX) drug by amplifying the adhesive capability of formulation by forming throat paint for the Streptococcal pharyngitis, a sore throat infection. Methods: Solid dispersion was prepared by solvent evaporation technique, in which three different ratios of Polyethylene glycol-6000 (PEG-6000) were selected, and the best ratio of solid dispersion was selected after characterization including Scanning electron microscopy (SEM) and Differential scanning calorimetry (DSC) with evaluation parameters including % yield, drug content, and drug solubility. In the case of throat paint, out of six different formulations, the best formulation was selected through viscosity, in vitro mucoadhesion, in situ release study, and spreadability parameters. Results: The DSC and SEM data proved that solid dispersion has a different moiety than its ingredients but it is quite a stable form. Formulation MD-2 was selected as the best formulation which able to increase the solubility of the drug by more than 3.5 folds, at the same time it shows the highest rate of drug dissolution of 13.951 μg/ml with % yield (97.199±0.167%) and drug content (96.425%). Throat paint was formed by fusion and trituration process and out of all six formulations F3 was selected as the best formulation on the basis of Viscosity (11932 Centi poise), Spreadability (17.621), Mucoadhesion (3937.481 dyne/cm2), and drug release (90.336±0.6%). Conclusion: Solid dispersion was successfully prepared with 3.5 times of solubility enhancement capability in comparison with pure CPX drug. The throat paint releases the drug (≥3 h) in a sustained manner with high mucoadhesive force.

2020 ◽  
Vol 88 (4) ◽  
pp. 52
Author(s):  
Mona Qushawy ◽  
Ali Nasr ◽  
Shady Swidan ◽  
Yasmin Mortagi

Glimepiride is an antidiabetic drug which is one of the third generation sulfonylureas. It belongs to class II, according to the BCS (Biopharmaceutical Classification System), which is characterized by low solubility and high permeability. The aim of this work was to formulate glimepiride as solid dispersion using water-soluble carriers to enhance its aqueous solubility and thus enhance its bioavailability. Nine formulations of glimepiride solid dispersion were prepared by a solvent evaporation technique using three different carriers (mannitol, polyethylene glycol 6000, and β-cyclodextrin) with three different drug carrier ratio (1:1, 1:3, and 1:6). Formulation variables were optimized using 32 full factorial design. The prepared formulations were evaluated for production yield, drug content, micromeritic properties, thermal analysis, in-vitro release, and in-vivo hypoglycemic effect. All prepared formulations showed high production yield ranged from 98.4 ± 2.8 to 99.8 ± 2.2% and high drug content in the range of 97.2 ± 3.2 to 99.6 ± 2.1%. The micromeritic properties revealed that all prepared glimepiride formulations showed good flowability. The differential scanning calorimetry study revealed the presence of the drug in the more soluble amorphous form. In accordance with the results of in vitro release study, it was found that the solubility of glimepiride was increased by increasing the drug carrier ratio, compared with the pure form of the drug. It was found that F9 showed a high and rapid reduction in blood glucose levels in diabetic rats, which indicated the success of a solid dispersion technique in improving the solubility and hence the bioavailability of glimepiride.


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (02) ◽  
pp. 21-30
Author(s):  
V. V. Pande ◽  
◽  
V. M. Sanklecha ◽  
S. R Arote

The present study involved the design and development of extended release matrix pellets of azilsartan medoxomil with its solid dispersion (Azil SD). A solid dispersion of azilsartan medoxomil was prepared with a carrier, Hypromallose acetate succinate (Affinisol 716G) by solvent evaporation technique. Extended release matrix pellets were prepared from Azil SD using a combination of polycarbophil, HPMC K4M, MCC and guar gum. AzilSD and the pellets were evaluated for various physicochemical properties such as solubility, drug loading, drug content, surface morphology and swelling behaviourand analysis carried out using Fourier transform infrared spectroscopy, differential scanning calorimetry and powder X-ray diffraction. The solubility and dissolution rate of Azil SD was 5.71 and 2.07 times greater, respectively.The optimized batch was selected based on 100% cumulative drug release in 12 hours. Formulation Batch F6 showed 99.19% CDR in 12 hours and drug content 97.89 %. The mechanism of the drug release rate kinetics of the Batch F6 followed the Korsmeyer-Peppas. Thus it can be concluded that Affinisol 716G based solid dispersion mechanism, enhances the solubility and dissolution of azilsartan medoxomil by using polycarbophil and HPMC K4M, forming an effective carrier for developing extended release matrix pellets.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 627
Author(s):  
Ahmad A. Shahba ◽  
Ahmad Y. Tashish ◽  
Fars K. Alanazi ◽  
Mohsin Kazi

The study aims to design a novel combination of drug-free solid self-nanoemulsifying drug delivery systems (S-SNEDDS) + solid dispersion (SD) to enhance cinnarizine (CN) dissolution at high pH environment caused by hypochlorhydria/achlorhydria. Drug-loaded and drug-free liquid SNEDDS were solidified using Neusilin® US2 at 1:1 and 1:2 ratios. Various CN-SDs were prepared using freeze drying and microwave technologies. The developed SDs were characterized by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD). In-vitro dissolution studies were conducted to evaluate CN formulations at pH 6.8. Drug-free S-SNEDDSs showed acceptable self-emulsification and powder flow properties. DSC and XRD showed that CN was successfully amorphized into SDs. The combination of drug-free S-SNEDDS + pure CN showed negligible drug dissolution due to poor CN migration into the formed nanoemulsion droplets. CN-SDs and drug-loaded S-SNEDDS showed only 4% and 23% dissolution efficiency (DE) while (drug-free S-SNEDDS + FD-SD) combination showed 880% and 160% enhancement of total drug release compared to uncombined SD and drug-loaded S-SNEDDS, respectively. (Drug-free S-SNEDDS + SD) combination offer a potential approach to overcome the negative impact of hypochlorhydria/achlorhydria on drug absorption by enhancing dissolution at elevated pH environments. In addition, the systems minimize the adverse effect of adsorbent on drug release.


2021 ◽  
Author(s):  
Pranav Shah ◽  
Milan Patel ◽  
Jigar Shah ◽  
Anroop Nair ◽  
Sabna Kotta ◽  
...  

Abstract The objective of the present study was to evaluate the potential of solid dispersion adsorbate to improve the solubility and bioavailability of rivaroxaban (RXN). Solid dispersion adsorbate (SDA) of RXN was developed by fusion method using PEG 4000 as carrier and Neusilin as adsorbent. A 32 full factorial design was utilized to formulate various SDAs. The selected independent variables were amount of carrier (X1) and amount of adsorbate (X2). The responses measured were time required for 85% drug release (Y1) and saturated solubility (Y2). MTT assay was employed for cytotoxicity studies on Caco-2 cells. In vivo pharmacokinetics and pharmacodynamic evaluations were carried out to assess the prepared SDA. Pre-compression evaluation of SDA suggests the prepared batches (B1-B9) possess adequate flow properties and could be used for compression of tablets. Differential scanning calorimetry and X-ray diffraction data signified the conversion of crystalline form of drug to amorphous form, a key parameter accountable for improvement in drug dissolution. Optimization data suggests that the amount of carrier and amount of adsorbate significantly (P < 0.05) influence both dependent variables (time required for 85% drug release and saturated solubility). Post-compression data signifies that the compressibility behavior of prepared tablets were within the official standard limits. Significant increase (P < 0.0001) in the in vitro dissolution characteristics of RXN was noticed in optimized SDA (>85% in 10 min) as compared to pure drug, marketed product and directly compressible tablet. Cytotoxicity studies confirm nontoxicity of prepared RXN SDA tablets. Higher Cmax and AUC achieved with RXN SDA tablets indicated enhancement in oral bioavailability (~3 folds higher than the RXN suspension). Higher bleeding time and percentage of platelet aggregation noticed with RXN SDA tablets further substantiate the efficacy of the prepared formulation. In summary, the results showed the potential of RXN SDA tablets to enhance the bioavailability of RXN and hence can be an alternate approach of solid dosage form for its development for commercial application.


Author(s):  
SANTOSH KUMAR R ◽  
ANNU KUMARI

Objective: The objective of the present research was to prepare starch phthalate (a novel superdisintegrant) and to optimize and formulate acyclovir fast dissolving tablets employing 23 factorial design using starch phthalate as superdisintegrant. Materials and Methods: Drug excipient compatibility studies such as Fourier-transform infrared spectroscopy, differential scanning calorimetry, and thin-layer chromatography were carried out to check the drug interaction between acyclovir and starch phthalate. The direct compression method was used for tablet preparation. Prepared tablets were then evaluated for hardness, friability, drug content, disintegration time, water absorption, and wetting time, in vitro dissolution studies. Response surface plots and contour plots were also plotted to know the main effects and interaction effects of independent variables (starch phthalate [A], croscarmellose sodium [B], and crospovidone [C] on dependent variables [disintegration time and drug dissolution efficiency in 1 min]) and stability studies were also done. Results: Tablets of all formulations were of good quality concerning drug content (100±5%), hardness (3.6–4.0 kg/cm2), and friability (<0.16%). In all formulations, formulation F8 found to be optimized formulation with least disintegration time 9±3 s, less wetting time 10±0.17 s, and enhanced dissolution rate in 1 min, i.e., 99.92±0.11 as compared to other formulation. Conclusion: From the research, it was concluded that on combination with crospovidone (5%) and croscarmellose sodium (5%), starch phthalate (10%) enhanced the dissolution efficiency of the drug. Hence, starch phthalate can be used as a novel disintegrant in the manufacturing of fast dissolving tablets.


Author(s):  
Bhikshapathi D.V. R. N. ◽  
Vishwaja M ◽  
Suthakaran R ◽  
Usha Sri B ◽  
M. Ratan Seshagiri Rao

The aim of present work is to enhance the solubility and bioavailability of Simvastatin by solid dispersion technique and characterize the same. Preliminary solubility studies were conducted to check the solubility in different polymers. Based on the results 20 formulations prepared by solvent evaporation method with varying ratios of Kleptose HPB, Soluplus, Kolliwax GMS II, Kolliphor P188 and PVPK-30. All the formulations were analyzed for solubility, percentage yield, drug content and in vitro drug release. The formulation SD20 with enhanced solubility of 20.05 ± 0.02μg/mL in Kolliwax GMS II, percentage yield of 99.13% and dissolution rate of 99.2 ± 2.3% within 90 min is chosen as optimized formulation. The formulation is further Characterized for Drug excipient interaction by FTIR, PXRD and SEM studies. The stability studies for 6 months indicated no significant changes in drug content or drug dissolution rate. Hence, improve dissolution characteristics of Simvastatin achieved by increasing its release and solubility through solid dispersion technique.


2020 ◽  
Vol 17 ◽  
Author(s):  
Elham Khodaverdi ◽  
Farhad Eisvand ◽  
Mohammad Sina Nezami ◽  
Seyedeh Nesa Rezaeian Shiadeh ◽  
Hossein Kamali ◽  
...  

Background:: Doxycycline (DOX) is used in treating a bacterial infection, especially for periodontitis treatment. Objective: To reduce irritation of DOX for subgingival administration and increase the chemical stability and against enzy-matic, the complex of α-cyclodextrin with DOX was prepared and loaded into injectable in situ forming implant based on PLGA. Methods:: FTIR, molecular docking studies, X-ray diffraction, and differential scanning calorimetry was performed to char-acterize the DOX/α-cyclodextrin complex. Finally, the in-vitro drug release and modeling, morphological properties, and cellular cytotoxic effects were also evaluated. Results:: The stability of DOX was improved with complex than pure DOX. The main advantage of the complex is the al-most complete release (96.31 ± 2.56 %) of the drug within 14 days of the implant, whereas in the formulation containing the pure DOX and the physical mixture the DOX with α-cyclodextrin release is reached to 70.18 ± 3.61 % and 77.03 ± 3.56 %, respectively. This trend is due to elevate of DOX stability in the DOX/ α-cyclodextrin complex form within PLGA implant that confirmed by the results of stability. Conclusion:: Our results were indicative that the formulation containing DOX/α-cyclodextrin complex was biocompatible and sustained-release with minimum initial burst release.


Author(s):  
R. SANTOSH KUMAR ◽  
ANNU KUMARI ◽  
B. KUSUMA LATHA ◽  
PRUDHVI RAJ

Objective: The aim of the current research is optimization, preparation and evaluation of starch tartrate (novel super disintegrant) and preparation of fast dissolving oral films of cetirizine dihydrochloride by employing starch tartrate. Methods: To check the drug excipient compatibility studies of the selected drug (Cetrizine dihydrochloride) and the prepared excipient i. e starch tartrate, different studies like FTIR (Fourier-transform infrared spectroscopy), DSC (Differential scanning calorimetry) and thin-layer chromatography (TLC) were carried out to find out whether there is any interaction between cetirizine dihydrochloride and starch tartrate. The solvent casting method was used for the preparation of fast dissolving films. The prepared films were then evaluated for thickness, folding endurance, content uniformity, tensile strength, percent elongation, in vitro disintegration time and in-vitro dissolution studies. Response surface plots and contour plots were also plotted to know the individual and combined effect of starch tartrate (A), croscarmellose sodium (B) and crospovidone (C) on disintegration time and drug dissolution efficiency in 10 min (dependent variables). Results: Films of all the formulations are of good quality, smooth and elegant by appearance. Drug content (100±5%), thickness (0.059 mm to 0.061 mm), the weight of films varies from 51.33 to 58.06 mg, folding endurance (52 to 67 times), tensile strength (10.25 to 12.08 N/mm2). Fast dissolving films were found to disintegrate between 34 to 69 sec. Percent dissolved in 5 min were found to be more in F1 formulation which confirms that starch tartrate was effective at 1%. Conclusion: From the research conducted, it was proved that starch tartrate can be used in the formulation of fast dissolving films of cetirizine dihydrochloride. The disintegration time of the films was increased with increase in concentration of super disintegrant.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (01) ◽  
pp. 25-31
Author(s):  
M Priyanka ◽  
◽  
F. S. Dasankoppa ◽  
H. N Sholapur ◽  
NGN Swamy ◽  
...  

The poor bioavailability and the therapeutic effectiveness exhibited by the anti-depressant venlafaxine hydrochloride on oral administration is overcome by the use of ion-activated gel forming systems that are instilled as drops; these undergo gelation in the nasal cavity. The present study describes the design, characterization and evaluation of mucoadhesive nasal in situ gelling drug delivery of venlafaxine hydrochloride using different polymers like sodium alginate, HPMC and pectin in various concentrations. DSC studies revealed compatibility of the drug and excipients used. The in situ gels were characterized for physicochemical parameters, gelling ability, rheological studies, drug content, drug entrapment efficiency, in vitro mucoadhesive strength, water holding capacity, gel expansion coefficient and in vitro drug release studies. The amount of polymer blends was optimized using 23 full factorial design. The influence of experimental factors on percentage cumulative drug release at the end of 2 and 8 hours were investigated to get optimized formulation. The responses were analyzed using ANOVA and polynomial equation was generated for each response using multiple linear regression analysis. Optimized formulation, F9, containing 1.98% w/V sodium alginate, 0.64% w/V hydroxylpropyl methylcellulose, 0.99% w/V pectin showed percentage cumulative drug release of 19.33 and 80.44 at the end of 2 and 8 hours, respectively, which were close to the predicted values. The optimized formulation was subjected to stability study for three months at 300C /75% RH. The stability study revealed no significant change in pH, drug content and viscosity. Thus, venlafaxine hydrochloride nasal mucoadhesive in situ gel could be successfully formulated to improve bioavailability and to target the brain.


1970 ◽  
Vol 1 (3) ◽  
pp. 43-49 ◽  
Author(s):  
Jovita Kanoujia ◽  
Kanchan Sonker ◽  
Manisha Pandey ◽  
Koshy M Kymonil ◽  
Shubhini A Saraf

The present research work deals with the formulation and evaluation of in-situ gelling system based on sol-to-gel transition for ophthalmic delivery of an antibacterial agent gatifloxacin, to overcome the problems of poor bioavailability and therapeutic response exhibited by conventional formulations based a sol-to-gel transition in the cul-de-sac upon instillation. Carbopol 940 was used as the gelling agent in combination with HPMC and HPMC K15M which acted as a viscosity enhancing agent. The prepared formulations were evaluated for pH, clarity, drug content, gelling capacity, bioadhesive strength and in-vitro drug release. In-vitro drug release data of optimized formulation (F12) was treated according to Zero, First, Korsmeyer Peppas and Higuchi kinetics to access the mechanism of drug release. The clarity, pH, viscosity and drug content of the developed formulations were found in range 6.0-6.8, 10-570cps, 82-98% respectively. The gel provided sustained drug release over an 8 hour period. The developed formulation can be used as an in-situ gelling vehicle to enhance ocular bioavailability and the reduction in the frequency of instillation thereby resulting in better patient compliance. Key Words: In-situ gelation; Gatifloxacin; Carbopol 940; HPMC K15M. DOI: http://dx.doi.org/10.3329/icpj.v1i3.9661 International Current Pharmaceutical Journal 2012, 1(3): 43-49


Sign in / Sign up

Export Citation Format

Share Document