scholarly journals A REVIEW ON ANALYTICAL METHOD DEVELOPMENT AND VALIDATION

2018 ◽  
Vol 10 (6) ◽  
pp. 8 ◽  
Author(s):  
Shivani Sharma ◽  
Swapnil Goyal ◽  
Kalindi Chauhan

The top objective of any pharmaceutical industry is to produce products of necessary characteristic and quality reliably, in a cost-effective manner. Development of a method is essential for discovery, development, and evaluation of medicines in the pharmaceutical formulation. The main aim of this review article was to check the development and validation of the procedure employed for the medication from the starting of the formulation to the complete commercial batch of product. At the point when an analytical technique is applied to produce outcomes for the quality of medicine associated samples, it is necessary that the outcomes are reliable. In the pharma industry, validation policy is documented for how to perform validation, types of validation and validation policy are complied with the necessities of good manufacturing practice (GMP) regulations. Validation is very important for the effective running of the pharmaceutical firms. At every stage from raw material to the finished, stability, everywhere validation was performed. The method was developed properly, and validation parameters are explained in terms of accuracy, specificity, precision, limit of detection (LOD), limit of quantitation (LOQ), ruggedness, robustness, and system suitability testing with the example of certain drugs. All validation parameters are used in the routine and stability analysis.

2018 ◽  
Vol 68 (2) ◽  
pp. 171-183
Author(s):  
Béla Kovács ◽  
Lajos Kristóf Kántor ◽  
Mircea Dumitru Croitoru ◽  
Éva Katalin Kelemen ◽  
Mona Obreja ◽  
...  

Abstract A reverse-phase HPLC (RP-HPLC) method was developed for strontium ranelate using a full factorial, screening experimental design. The analytical procedure was validated according to international guidelines for linearity, selectivity, sensitivity, accuracy and precision. A separate experimental design was used to demonstrate the robustness of the method. Strontium ranelate was eluted at 4.4 minutes and showed no interference with the excipients used in the formulation, at 321 nm. The method is linear in the range of 20–320 μg mL−1 (R2 = 0.99998). Recovery, tested in the range of 40–120 μg mL−1, was found to be 96.1–102.1 %. Intra-day and intermediate precision RSDs ranged from 1.0–1.4 and 1.2–1.4 %, resp. The limit of detection and limit of quantitation were 0.06 and 0.20 μg mL−1, resp. The proposed technique is fast, cost-effective, reliable and reproducible, and is proposed for the routine analysis of strontium ranelate.


2021 ◽  
Vol 37 (2) ◽  
pp. 348-353
Author(s):  
Mohan bhatale ◽  
Neelakandan kaliyaperumal ◽  
Gopalakrishnan Mannathusamy ◽  
Gurunathan ramalingam

A simple, selective, precise and accurate Gas chromatographic method for determination of Triethyl orthoformate content (Genotoxic impurity) in 5-MIA is reported. The GC method development and validation as per the International Council for Harmonisation (ICH) guidelines Q2(R1). The effective chromatographic separations were achieved on DB-624, 60 m × 0.53 mm ID, with film thickness of 3.0 μm (Fused silica capillary column), Capillary injector temperature of 150°C, and Nitrogen Carrier gas. This method is unique as there is no UV response; hence GC Method was developed for Triethyl orthoformate. The elution was accomplished with the flow rate of 5.0 mL/min and Split Flow of 10 mL/minute. Detection was performed with FID detector (temp. 260°C) and with column oven temperature program. Methods range from limit of quantitation (LOQ) to 150% level with respect to specification concentration limit of impurity is linear and correlation coefficient of impurity is > 0.99. The linearity of Triethyl orthoformate covered from LOQ to 113 ppm (ie. LOQ to 150% of specification limit) and LOQ to 19 ppm wrt standard concentration. The limit of detection (LOD)values were observed were 2.5 ppm and limit of quantitation (LOQ) were 7.7 ppm, respectively. The parameters selected for the method validated were from international conference on harmonization guidelines, Indian pharmacopeia, USP. The percentage recovery from LOQ, 50% ,100% to 150% level of content were 87.70%, 98.60%, 102.25 and 96.59% respectively. The %RSD values were for LOQ to 150% were from 1.64%, 0.89%, 1.78 % and 1.49%. The range was covered from LOQ to 150% of standard concentration. The results of validation parameters were found in the acceptance range. Standard and sample were stable up to 30 h at when stored at room temperature. Also it was quite robust for the small change in method parameter like, change in column oven temperature(± 5 degree). Hence from the above parameter it was concluded that the GC method with FID detector is selective, precise, linear, and robust for simultaneous estimation of Triethyl orthoformate in Drug Substances.


2018 ◽  
Vol 5 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Oman Zuas ◽  
Harry Budiman ◽  
Dieni Mansur ◽  
Muhammad Rizky Mulyana

Abstract This paper reported the method development and validation of a gas chromatography with thermal conductivity detector (GC-TCD) method for the measurement of the gaseous products of hydrodeoxygenation (HDO). The method validation parameters include selectivity, precision (repeatability and reproducibility), accuracy, linearity, limit of detection (LoD), limit of quantitation (LoQ), and robustness. The results showed that the developed method was able to separate the target components (H2, CO2, CH4 and CO) from their mixtures without any special sample treatment. The validated method was selective, precise, accurate, and robust. Application of the developed and validated GC-TCD method to the measurement of by-product components of HDO of bio-oil revealed a good performance with relative standard deviation (RSD) less than 1.0% for all target components, implying that the process of method development and validation provides a trustworthy way of obtaining reliable analytical data.


2021 ◽  
Vol 10 (1) ◽  
pp. 22-25
Author(s):  
Firake Bhushan M. ◽  
Pathak Pranjalee V. ◽  
Dorik Pallavi K. ◽  
Siddaiah M.

UV spectrophotometry is an analytical technique used routinely for qualitative and quantitative assay due the low cost and reliability during analysis. An simple, efficient, rapid, sensitive, precise and economical UV Spectrophotometric method has been developed for estimation of agomelatine from bulk and pharmaceutical formulation. The method was developed and validated according to International Conference on Harmonization (ICH Q2 R1) guidelines.  The λmax of agomelatine in acetonitrile was found to be 229.6 nm. The analytical method validation parameters linearity, precision, accuracy, robustness were studied according to International Conference on Harmonization guidelines. Pure drug concentration was prepared in the range of 1-10 μg/ml and the linear regression analysis data showed good linear relationship with correlation coefficient value 0.9937. The precision of the method was studied as an intra- day, inter-day variations with value less than 2 % RSD. The limit of detection and limit of quantitation were found to be 0.577 and 1.248 μg/ml, respectively. Recoveries were found to be in the range of 100.815 to 101.744 % and % RSD was less than 2 %. This proposed UV spectroscopic method is simple and suitable for routine analysis. Keywords: Keywords: Agomelatine, Validation, UV Spectrophotometric method


2019 ◽  
Vol 57 (8) ◽  
pp. 715-723
Author(s):  
Elizabeth Mary Mathew ◽  
Leslie Lewis ◽  
Pragna Rao ◽  
K Nalini ◽  
Asha Kamath ◽  
...  

AbstractMethyl malonic acid and branched-chain keto acids are important biomarkers for the diagnosis of cobalamin deficiencies and maple syrup urine disease. We report the development and validation of a HILIC-ESI-MS2 method for the quantification of these organic acids from neonatal urine. The samples were 100 times diluted and analyzed on a ZIC-HILIC column with 25-mM formic acid in water: 25-mM formic acid in acetonitrile (45:55) at a flow rate of 0.8 mL/min with a runtime of only 6 minutes. The method demonstrated a lower limit of detection of 10 ng/mL, Limit of Quantification (LOQ) of 50 ng/mL, linearity of r2 ≥ 0.990 and recoveries of 87–105% for all analytes. The intraday and interday precision CV’s were <10% and 12%, respectively. Extensive stability studies demonstrated the analytes to be stable in stock and in matrix with a percent change within ±15%. The Bland–Altman analysis of the developed method with the gold standard GCMS method demonstrated a bias of 0.44, 0.11, 0.009 and –0.19 for methyl malonic acid, 3-methyl-2-oxovaleric acid, 2-hydroxy-3methylbutyric acid and 4-methyl-2-oxovaleric acid, respectively, proving the methods are comparable. The newly developed method involves no derivatization and has a simple sample preparation and a low runtime, enabling it to be easily automated with a high sample throughput in a cost-effective manner.


Author(s):  
ILMA NUGRAHANI ◽  
STEPHANIE SULISTIANA ◽  
SLAMET IBRAHIM

Objective: This study was aimed to develop a rapid analysis using FTIR (Fourier Transform Infra-Red) for papaverine hydrochloride (HCl) determination in the hair sample, supported by a mathematically manipulation; which never been reported before in toxicology and forensic analysis. Methods: Firstly, the method was checked its validity to ensure the feasibility for the quantitative purpose. The absorbance spectrums were collected by measure the drug, matrix, and its mixture. A spectra which showed the best specificity and linearity then was selected and derived. Afterwards, the area under the curve (AUC) was measured. A series of concentration was used for compose the calibration curve. Based on the result, some validation parameters were checked thoroughly. Further, for sample preparation, hair was collected non-invasively, then was decontaminated using soap. Next, it was immersed into a papaverine HCl solution at a concentration of 25 mg/ml along days. Finally, the amount of drugs absorbed were measured by the developed method using FTIR. Results: Experimental data showed that all validation parameters could be fulfilled by the developed method. The selected spectra for the content determination was 1320-1230 cm-1. Its linearity was represented by a correlation coefficient value (r) ≥ 0.9999, variation coefficient (Vxo) ≤ 2.0%. The limit of detection (LOD) was 0.00618% w/w, meanwhile, the limit of quantitation (LOQ) was 0.02060% w/w, respectively. The percent recovery was in the range 97-103% with the relative standard deviation (RSD) was ≤ 2.0%. The drug has detected after 72 h immersion, moreover, after 192 h the concentration gained was 0.1594±0.0011% w/w. Conclusion: As the conclusion, FTIR absorbance-derivative method is adequate as a rapid procedure for determine papaverine HCl in the hair sample. This method shows the appropriate of specificity, accuracy and precise. In addition, it shows the advantages of simplicity, green/eco-friendlier, and cost-efficiency.


Author(s):  
Ayya Rajendra Prasad ◽  
Jayanthi Vijaya Ratna

 Objective: The objective of this study was developed and validated a novel, specific, precise, and simple ultraviolet (UV)-spectrophotometric method for the estimation of norfloxacin present in taste masked drug-resin complex.Methods: UV-spectrophotometric determination was performed with ELICO SL 1500 UV-visible spectrophotometer using 0.1 N HCl as a medium. The spectrum of the standard solution was run from 200 to 400 nm range for the determination of absorption maximum (λ max). λ max of norfloxacin was found at 278 nm. The absorbance of standard solutions of 1, 2, 3, 4, and 5 μg/ml of drug solution was measured at an absorption maximum at 278 nm against the blank. Then, a graph was plotted by taking concentration on X-axis and absorbance on Y-axis which gave a straight line. Validation parameters such as linearity and range, selectivity and specificity, limit of detection (LOD) and limit of quantification (LOQ), accuracy, precision, and robustness were evaluated as per the International Conference on Harmonization (ICH) guidelines.Results: Linearity for the UV-spectrophotometric method was noted over a concentration range of 1–5 μg/ml with a correlation coefficient of 0.9995. The LOD and LOQ for norfloxacin were found at 0.39 μg/ml and 1.19 μg/ml, respectively. Accuracy was in between 99.00% and 99.17%. % relative standard deviation for repeatability, intraday precision, and interday precision was found to be 0.600, in between 0.291 and 0.410, and in between 0.682 and 1.439, respectively. The proposed UV spectrophotometric method is found to be robust.Conclusion: The proposed UV-spectrophotometric method was validated according to the ICH guidelines, and results and statistical parameters demonstrated that the developed method is sensitive, precise, reliable, and simple for the estimation of norfloxacin present in taste masked drug-resin complex.


Author(s):  
Seema R. Nikam ◽  
Amol S. Jagdale ◽  
Sahebrao S. Boraste ◽  
Shrikant B Patil

Quantitatively measurements of chemical and biological drugs and their metabolites in the biological sample. This used in clinical and non-clinical studies. Non clinical including Pharmacokinetic and Toxic kinetic study, and clinical including Bioavailability, Bioequivalence study. This are play significant role and help in improvement in technology and analytical methods. Recent years have witnessed the introduction of several high- quality review articles into the literature covering various scientific and technical aspects of bioanalysis. Method validation and development use for the purpose of suitability of method for their intended purpose, this are important in Drug Discovery and Development. It including a validation parameters are Accuracy, Precision, Range, Calibration Curve, Recovery, Limit of Detection, Limit of Quantitation, Specificity, Selectivity and Stability, Ruggedness. This applicable in bio analysis, FDA and EMA guidelines. There are 3 main Extraction techniques used in sample preparation in bioanalysis is precipitation, liquid –liquid extraction, solid phase extraction. Detection of analyte by using hyphenated and chromatographic techniques like LC-MS/MS, HPLC, GC-MS. This LC-MS/MS is commonly used in a bioanalysis. This bio analysis study used in Pharmaceutical, Biomedical research purpose. Many challenges in pharmaceutical industry that fulfill by the utilization of analytical technologies and high-throughput automated platforms has been employed; in order to perform more experiments in a shorter time frame with increased data quality.


2019 ◽  
Vol 31 (1) ◽  
pp. 32-39
Author(s):  
Suman Shrivastava ◽  
Pooja Deshpande ◽  
S. J. Daharwal

Development of a method is crucial for discovery, development, and analysis of medicines in the pharmaceutical formulation. Method validation could also be thought to be one in all the foremost well-known areas in analytical chemistry as is reproduced within the substantial variety of articles submitted and presented in peer review journals every year. Validation of an analytical procedure is to demonstrate that it's appropriate for its intended purpose. Results from method validation are often wont to decide the quality, reliability and consistency of analytical results. Analytical methods need to be validated or revalidated. This review describes general approach towards validation process and validation parameters to be considered during validation of an analytical method. It also refers to various regulatory requirements like WHO, USFDA, EMEA, ICH, ISO/IEC. The parameters described here are according to ICH guidelines which include accuracy, precision, specificity, limit of detection, limit of quantification, linearity range and robustness.


2018 ◽  
Vol 5 (1) ◽  
pp. 1-4
Author(s):  
Devi Velmurugan ◽  
Jambulingam Munusamy ◽  
Ananda Thangadurai Subramaniam ◽  
Anandkumar Karunakaran ◽  
Abdul Latiff MKM ◽  
...  

In the present study we are reporting  dissolution, method development and validation of water soluble vitamins B1, B2 & B6 in bulk and tablet dosage form by HPTLC method. The method is based on separation of the three vitamins using HPTLC. Thin layer chromatographic plates coated with silica gel 60F254 as the stationary phase and acetonitrile:water (6:4 v/v) as mobile phase. The chromatographic analysis was carried out in the reflectance and absorbance mode at 280 nm. The method was validated with respect to linearity, accuracy and precision, limit of detection and limit of quantitation. It was then applied for analysis of vitamins B1, B2 & B6 in combined tablet dosage form. The above method developed was reproducible with good resolution and the results of analysis have been validated with correlation coefficient of 0.9990


Sign in / Sign up

Export Citation Format

Share Document