scholarly journals OPTIMIZATION AND IN VITRO EVALUATION OF THE RELEASE OF CLASS II DRUG FROM ITS NANOCUBOSOMAL DISPERSION

Author(s):  
Sadeq Jaafar Al-sakini ◽  
Nidhal Khazaal Maraie

Objective: This work involves investigation and evaluation of the factors that affect the preparation and the release of the model class II drug (erythromycin) to optimize the efficiency of its prepared nanocubosomal dispersion to give very fast initial burst effect within the first hour that can continue for further two hours. Methods: The work involved preparation of ten formulas of cubosomal dispersion by emulsifying different concentrations of glyceryl monooleate (GMO) (lipid content)/surfactant mixtures which were nano-sized and characterized morphologically by Transmission electronic microscopic (TEM), zeta potential, particle size, polydispersity index (pdI), pH, entrapment efficiency, conductivity test, dilution test and in vitro drug release. Results: The selected nanocubosomal formula (F1) showed pH (7.41), particle size (315.05 nm), pdI (0.194), zeta potential (-30.852), entrapment efficiency (91%) and gave a 70% drug release within the first hour of the in vitro test and continued until it gave 96.3% drug release with further 2 h. Conclusion: this work succeeded in preparing optimized cubosomal dispersion for erythromycin using different GMO/poloxamer 407 percent. The optimum formula gave an immediate release of the model drug (erythromycin) and it was ready to be incorporated in any suitable dosage form to give fast onset of action.

This work involves investigation and evaluation of the factors that affect the preparation and release of the model class I drug (loxoprofen sodium) to optimize the efficiency of its prepared nano transfersomal dispersion to give rapid onset of action (burst effect) within the first 2 hours that can continue for further four hours. The work involved preparation of twenty formulas of transfersomal dispersion by thin film method which were nano-sized by probe sonication and characterized morphologically by Transmission electronic microscopic (TEM), zeta potential, particle size, polydispersity index (pdI), pH, physical appearance, entrapment efficiency, viscosity, transmittance and in vitro drug release. The selected nano transfersomal formula (SF16) showed pH (7.2), particle size (393 nm), pdI (0.259), zeta potential (-25), entrapment efficiency (91%) and gave a 73% drug release within the first 2 hours of the in vitro test and continued until it gave 86.35% drug release after 4 h. This work succeeded in preparing optimized tansfersomal dispersion for loxoprofen sodium using different soya lecithin / edge activator percent and different types of edge activator. The optimum formula gave an immediate release of the model drug (loxoprofen sodium) and it was ready to be incorporated in any suitable dosage form to give continuous drug release.


Author(s):  
Somasundaram I

Aims and Objectives: The present study is to formulate the nanosuspension containing a hydrophilic drug pramipexole dihydrochloride and hesperidin and to increase the drug entrapment efficiency.Methods: Hesperidin and pramipexole dihydrochloride loaded in chitosan nanosuspension is prepared by ionic gelation method using chitosan and tripolyphosphate. There was no incompatibility observed between the drug and polymer through Fourier transform infrared and differential scanning calorimetric. Various other parameters such as particle size, zeta potential, scanning electron microscope, drug content, drug entrapment efficiency, and in vitro release have been utilized for the characterization of nanoparticles.Results and Discussion: The average size of particle is 188 nm; zeta potential is 46.7 mV; drug content of 0.364±0.25 mg/ml; entrapment efficiency of 72.8% is obtained with HPN3 formulation. The PHC1 shows the highest drug release followed by PHC2 due to low concentration of polymer and PHC4 and PHC5 show less drug release due to high concentration of polymer. The in vitro release of PHC3 is 85.2%, initial the burst release is shown which is approximately 60% in 8 h; then, slow release later on drastic reduction in release rate is shown in 24 h. The in vivo study histopathological report confers the effective protective against rotenone induces Parkinson’s.Conclusion: PHC3 was chosen as the best formulation due to its reduced particle size and controlled release at optimum polymer concentration which may be used to treat Parkinson’s disease effectively..


Author(s):  
REMYA P. N. ◽  
DAMODHARAN N.

Objective: The aim of the present study is to develop solid lipid nanoparticles (SLNs) of Nimodipine using hot homogenization followed by ultrasonication technique and to improve the dissolution characteristics of the drug. Methods: The Nimodipine-loaded SLN was prepared using palmitic acid and stearic acid as a lipid matrix and Tween-80 as an emulsifier by a hot homogenization and ultra-sonication method. The physicochemical characteristics of SLN were investigated for entrapment efficiency, zeta potential, in vitro drug release, particle size analysis, Fourier transform infrared studies, scanning electron microscopy, and stability studies. Results: The mean particle size, PDI, Zeta potential and entrapment efficiency of optimized Nimodipine SLN formulation of stearic acid was found to be 119.54 nm, 0.165,-17.60mV, 85% and for palmitic acid was found to be 132.54 nm, 0.155,-17.0mV, 81% respectively. In vitro drug release studies indicated that after an initial burst release, SLN could provide prolonged release of Nimodipine. The selected SLNs have shown good stability for a period of 180 d. Conclusion: SLN formulations showed the best results in EE as well as in vitro drug release and therefore, these results indicate that SLN might be a promising delivery system to enhance the release of Nimodipine.


2021 ◽  
Vol 11 (4) ◽  

Recently, solid lipid Nano-particles have received much attention by the researchers owing to its biodegradability, biocompatibility and the ability to deliver a wide range of drugs. The aim of the present study was to design Diltiazem solid lipid Nano-particles and to evaluate them. Diltiazem solid lipid Nano-particles were prepared by hot homogenization technique using different lipids (Tristearin, GMS and Comprital), soy lecithin as stabilizers and tween 80, Poloxamer as surfactants. The Nano-particles were evaluated for particle size & PDI, zeta potential, entrapment efficiency and in vitro drug release. The particle size ranged from 49.7 to 523.7 nm. PDI of all formulations were good within the range of 0.189 to 0.427. The zeta potential ranged from -10.5 to -29.6 Mv, Entrapment efficiency of all formulations were observed was in the range of 78.68 to 95.23 %. The cumulative percentage release of Diltiazem from different Diltiazem Nano-particles varied from 53.36 to 88.74% depending upon the drug lipid ratio and the type of lipid used. The average percentage of drug released from different SLNs after 24 hours showed in the following order: F9 (53.35%) < F6 (56.75%) < F4 (61.74%) < F7 (63.8%) < F5(67.77%) < F8(69.04%) < F3(75.31%) < F1(79.36%) <F2 (88.74%) respectively. The release kinetic studies showed that the release was first order diffusion controlled and the n values obtained from the Korsmeyer-Peppa’s model indicated the release mechanism was Quasi-Fickian type (n-value of 0.47). Keywords: Diltiazem, solid lipid Nano-particles, FTIR, in vitro drug release.


2020 ◽  
Vol 17 ◽  
Author(s):  
Bhaskar Kurangi ◽  
Sunil Jalalpure ◽  
Satveer Jagwani

Aim: The aim of the study was to formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC) through topical application. Background: Resveratrol (RV) is a nutraceutical compound that has exciting pharmacological potential in different diseases including cancers. Many studies of resveratrol have been reported for anti-melanoma activity. Due to its low bioavailability, the activities of resveratrol are strongly limited. Hence, an approach with nanotechnology has been done to increase its activity through transdermal drug delivery. Objective: To formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC). To evaluate resveratrol-loaded cubosomal gel (RC-Gel) for its topical application. Methods: RC was formulated by homogenization technique and optimized using a 2-factor 3-level factorial design. Formulated RCs were characterized for particle size, zeta potential, and entrapment efficiency. Optimized RC was evaluated for in vitro release and stability study. Optimized RC was further formulated into cubosomal gel (RC-Gel) using carbopol and evaluated for drug permeation and deposition. Furthermore, developed RC-Gel was evaluated for its topical application using skin irritancy, toxicity, and in vivo local bioavailability studies. Results: The optimized RC indicated cubic-shaped structure with mean particle size, entrapment efficiency, and zeta potential were 113±2.36 nm, 85.07 ± 0.91%, and -27.40 ± 1.40 mV respectively. In vitro drug release of optimized RC demonstrated biphasic drug release with the diffusion-controlled release of resveratrol (RV) (87.20 ± 2.25%). The RC-Gel demonstrated better drug permeation and deposition in mice skin layers. The composition of RC-Gel has been proved non-irritant to the mice skin. In vivo local bioavailability study depicted the good potential of RC-Gel for skin localization. Conclusion: The RC nanoformulation proposes a promising drug delivery system for melanoma treatment simply through topical application.


2020 ◽  
Vol 17 (10) ◽  
pp. 898-910 ◽  
Author(s):  
Saleh Ayed Alanazi ◽  
Gamaleldin Ibrahim Harisa ◽  
Mohammad M. Badran ◽  
Nazrul Haq ◽  
Awwad Abdoh Radwan ◽  
...  

Purpose: Hepatocellular carcinoma (HCC) is a common liver malignancy, which has a low survival rate of all cancers. 5-fluorouracil (5-FU) is clinically recognized to treat HCC. However, the success of this therapy is highly limited due to rapid clearance and non- selective distribution. Cholesterol- conjugate (5-FUC) loaded liposomes proposed to facilitate the transport of 5-FUC into tumor cells via Low-Density Lipoprotein receptor (LDL receptor) that overexpressed in HCC. Thus, the aim of this study was to use 5-FUC loaded liposome as a promising strategy to combat HCC and improve the response of HCC to chemotherapy. Methods: 5-FUC and 5-FU loaded liposomes were optimized based on Cholesterol (CHO) ratio and type of phospholipid to achieve a potential effect on HCC. Liposomes were prepared by the thin-film hydration method, and evaluated in terms of particle size, polydispersity, zeta potential, Entrapment Efficiency (EE), morphology, drug release and cytotoxicity. Results: The obtained liposomes had a suitable nano-range particle size with negative zeta potential, and acceptable EE%. In vitro drug release of 5-FUC loaded liposomes showed a lower cumulative release over 24 h as compared to 5-FU loaded liposomes. 5-FUC loaded liposomes exhibited a higher in vitro cytotoxic effect as compared to the free drug and 5-FU loaded liposomes against HepG2 cell lines after 48 h via MTT assay. Conclusion: These results concluded that 5-FUC loaded liposomes could be used as an alternative tactic to increase the therapeutic index of 5-FU and pave the way for potential clinical applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Vijay D. Wagh ◽  
Dipak U. Apar

Dry eye disease is a common disease of the tear film caused by decreased tear production or increased evaporation. The objective of this study was to develop and evaluate poly (dl-lactide-co-glycolide) (PLGA) nanoparticles for CsA (CsA) ophthalmic delivery, for the treatment of dry eye disease. Topical CsA is currently the only and safe pharmacologic treatment of severe dry eye symptoms. Nanoparticles (NPs) were prepared by W/O solvent evaporation technique followed by probe sonicator and characterized for various properties such as particle size, entrapment efficiency, zeta potential,in vitrodrug release,in vitropermeation studies by Franz diffusion cells, XRD, DSC, SEM, and stability studies. The developed nanosuspension showed a mean particle size in the range from 128 to 253.50 nm before freeze drying and after freeze drying 145.60 to 260.0 nm. The drug entrapment efficiency was from 58.35 to 95.69% and production yield was found between52.29±2.4and85.30±2.1% in all preparations. The zeta potential of the Eudragit RL containing nanoparticles was positive, that is, 20.3 mV to 34.5 mV. The NPs formulations exhibited a biphasic drug release with initial burst followed by a very slow drug release and total cumulative release up to 24 h ranged from 69.83 to 91.92%. Kinetically, the release profiles of CsA from NPs appeared to fit best with the Higuchi model. The change of surface characteristics of NPs represents a useful approach for improvement of ocular retention and drug availability.


Author(s):  
SHIVA KUMAR YELLANKI ◽  
SAI MANOJ A ◽  
MANGILAL T

Objective: The aim of the present research was to prepare metoprolol-loaded nanospheres. Metoprolol-loaded bovine albumin nanospheres were prepared by nanoprecipitation method. Metoprolol is beta-1-adrenergic receptor inhibitor specific to cardiac cells, thus producing negative chronotropic and ionotropic effect. Methods: Metoprolol nanospheres were prepared by nanoprecipitation method, using bovine serum albumin as polymer. The prepared nanospheres are evaluated for particle size evaluation, drug entrapment efficiency, and zeta potential. Drug-excipient compatibility was determined using Fourier-transform infrared spectroscopy. In vitro release and solubility of the drug from nanoparticles were determined. Results: The particle size of prepared metoprolol nanospheres was found to be always less than 200 nm. Maximum particle size was found to be 196±2.03 nm of batch 4 nanoparticles. Entrapment efficiency of prepared nanospheres was above 80% and maximum percentage entrapment efficiency was found to be 80.4±0.51%. It was found that the percentage entrapment efficiency and drug release were extended with increase in polymer concentration. Zeta potential of the optimized formulation was found to be −20.4 mV. In vitro drug release studies have shown the prolonged release of 94.5±0.54 up to 10 h. Drug release rate is extended with an increase in polymer concentration. Conclusion: Results have concluded that the albumin nanospheres loaded with metoprolol have reduced the blood pressure within 24 h and the prepared nanospheres are effective compared to other formulations and drug delivery.


Author(s):  
Mallappa S. Harwalkar ◽  
Kishor S. Salunkhe ◽  
Machindra J. Chavan ◽  
Ravindra B. Chintamani ◽  
Raosaheb Sopanrao Shendge

Background: Liposome offers many advantages over conventional dosage forms, like increased bioavailability, possibility of releasing drug at slower and constant rate, accurate drug release. Docetaxel is approved by the FDA for the treatment of locally advanced or metastatic breast cancer, head and neck cancer, gastric cancer. Docetaxel is BCS Class 4 drug; hence efficacy can be improved with liposomal formulation. Objectives: The Present study prepared Docetaxel loaded liposomal formulation. Materials and Methods: Formulation batches were designed on the basis of solvent, lipid to cholesterol ratio, lipid to release modifier ratio, hydration temperature and various physicochemical and morphological properties of formulation were examined. The zeta potential, particle size determination, pH, stability, determination of encapsulation efficacy, morphology of formulation and in-vitro drug release were investigated. Results:  The zeta potential values of FD5 and FD9 were found to be -12.6 to -12.9 mV and -10.6 to -11.9 mV respectively. The entrapment efficiency of formulations of batch FD5 and FD9 were found to be 83.20% and 85.22% respectively. By comparing both FD5 and FD9 it was found that FD9 batch is optimized than FD5 in all aspects.  The formulation batch FD9 has particle size of 105 nm, zeta potential in range of -10.6 to -11.9 mV; Drug entrapment efficiency 85.22%, Assay of formulation was 99.56 % and FD9 formulation shows extended release of Drug up to 13 hours. Conclusion: The study confirmed that the Liposome formulation was successfully prepared and evaluated.


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


Sign in / Sign up

Export Citation Format

Share Document