scholarly journals FORMULATION AND EVALUATION OF MOUTH DISSOLVING TABLET OF AMLODIPINE BESYLATE

Author(s):  
MEGHAWATI R. BADWAR ◽  
SANDHYA L. BORSE ◽  
MANISH S. JUNAGADE ◽  
ANIL G. JADHAV

Objective: The main objective of this research work was to formulate and evaluate the mouth dissolving tablet of amlodipine besylate for the treatment of hypertension and coronary artery disease. Methods: In this study, mouth dissolving tablet were prepared by direct compression method by using croscarmellose sodium and sodium starch glycolate as superdisintegrants. The designed tablets were subjected to various assessment parameters like friability test, hardness test, disintegration test, wetting time, in vitro drug release and drug content. Results: All the prepared formulations were subjected to various assessment parameters, and the findings obtain within the prescribed limit. The calibration curve of pure drug using various solvents like phosphate buffer pH 6.8, methanol was plotted. F1-F9 containing croscarmellose sodium and sodium starch glycolate in various concentration demonstrate the minimum disintegration time. Among all these formulations F9 shows disintegration time up to 22±1.12 seconds due to the high concentration of superdisintegrants. In vitro drug release was tested in phosphate buffer pH 6.8 at a time interval of 0, 1, 2, 3, 4, 5 min. The F9 shows drug release 100.22±1.08%. Accelerated stability study of optimized formulation (F9) up to 2 mo showed there was no change in disintegration time and percentage drug release. Conclusion: The results obtained in the research work clearly showed a promising potential of mouth dissolving tablets containing a specific ratio of croscarmellose sodium and sodium starch glycolate as superdisintegrants for the effective treatment of hypertension and coronary artery disease.

Author(s):  
Dattatraya M. Shinkar ◽  
Pooja S. Aher ◽  
Parag D. Kothawade ◽  
Avish D. Maru

Objective: The main objective of this research work was to formulate and evaluate fast dissolving tablet of verapamil hydrochloride for the treatment of hypertension.Methods: In this study, fast dissolving tablet were prepared by wet granulation method by using croscarmellose sodium and sodium starch glycolate as superdisintegrants in the concentration of 2%, 4%, and 6%. Polyvinyl pyrollidone K30 is used as a binder. The designed tablets were subjected to various assessment parameters like friability test, hardness test, disintegration test, wetting time, in vitro drug release and drug content.Results: All the prepared formulations were subjected to various assessment parameters, and the findings obtain within the prescribed limit. The calibration curve of pure drug using various solvents like distilled water, phosphate buffer pH 6.8 was plotted. F1-F9 containing croscarmellose sodium and sodium starch glycolate in various concentration demonstrate the minimum disintegration time. Among all these formulations F8 shows disintegration time upto 19±0.06 seconds due to the high concentration of superdisintegrants. In vitro drug release was tested in phosphate buffer pH 6.8 at a time interval of 0, 1, 3,6,9,12,15 min. The F8 shows drug release 98.5±0.567%. Accelerated stability study of optimized formulation (F8) up to 2 mo showed there was no change in disintegration time and percentage drug release.Conclusion: The results obtained in the research work clearly showed a promising potential of fast dissolving tablets containing a specific ratio of crosscarmellose sodium and sodium starch glycolate as superdisintegrants for the effective treatment of hypertension. 


2021 ◽  
Vol 20 (1) ◽  
pp. 19-29
Author(s):  
Nilima A Thombre ◽  
Pradeep S Ahire ◽  
Sanjay J Kshirsagar

In the current investigations, mouth dissolving tablets (MDT) were developed by applying quality by design (QbD) approach. Direct compression method was applied for the preparation of MDT containing aspirin using 32 factorial design with quantity of drug, microcrystalline cellulose (MCC) and crosscarmellose sodium (CCS) as dependant variables. MCC and CCS were used as superdisintegrants. Sodium stearyl fumarate was used as lubricant. Developed MDT were evaluated for characteristics like hardness, friability, disintegration time (DT) and in vitro drug release . Design Expert 11.0 described adequately impact of selected variables (MCC and CCS) at various levels for response under study (DT and friability). The optimized batch showed disintegration time of 15-28 secs, friability within 1% and in vitro drug release of 75-98% after 30 mins, respectively. The present study of experimental design revealed that MCC and CCS are fruitful at low concentration to develop the optimized formulation. As per the results obtained from the experiments, it can be concluded that QbD is an effective and efficient approach for the development of quality into MDT with the application of QTPP, risk assessment and critical quality attributes (CQA). Dhaka Univ. J. Pharm. Sci. 20(1): 19-29, 2021 (June)


2015 ◽  
Vol 49 (3) ◽  
pp. 173-180
Author(s):  
T Ayyappan ◽  
C Poojitha ◽  
T Vetrichelvan

In the present work, orodissolving tablets of Efavirenz were prepared by direct compression method with a view to enhance patient compliance. A 23 full factorial design was applied to investigate the combined effect of three formulation variables. Amount of crospovidone, croscarmellose sodium and sodium starch glycolate were used as superdisintegrant material along with direct compressible mannitol to enhance mouth feel. The prepared batches of tablets were evaluated for hardness, friability, weight variation, disintegration time, wetting time, drug content and in-vitro dissolution studies. Based on wetting time, disintegration time, the formulation containing crospovidone (5% w/v), carscarmellose sodium (5% w/v) and sodium starch glycolate (8% w/v) was found to be promising and tested for in-vitro drug release pattern (in 0.1 N HCl), short term stability and drug- superdisintegrants interaction. Surface response plots are presented to graphically represent the effect of independent variables (conc. of superdisintegrants) on the in-vitro dissolution time. The validity of the generated mathematical model was tested by preparing extra-design check point formulation. The formulation showed nearly faster drug release compared to the conventional commercial tablet formulation. Stability studies on the optimized formulation indicated that there was no significant change found in physical appearance, hardness, disintegration time, drug content and in-vitro drug release. DOI: http://dx.doi.org/10.3329/bjsir.v49i3.22131 Bangladesh J. Sci. Ind. Res. 49(3), 173-180, 2014


Author(s):  
Yella Sirisha ◽  
Gopala Krishna Murthy T E ◽  
Avanapu Srinivasa Rao

 Objective: The present research work is an attempt to determine the effect of various diluents and superdisintegrants on drug release of eletriptan orodispersible tablets and designs an optimized formulation using 22 factorial design. Further, evaluate the tablets for various pre-compression and post-compression parameters.Methods: The drug excipient compatibility study was conducted by infrared spectroscopy, differential scanning colorimetry and X-ray diffraction studies were conducted to test the purity of the drug. The tablets were formulated by direct compression method using spray dried lactose, mannitol, microcrystalline cellulose, starch as diluents and crospovidone, croscarmellose sodium, and sodium starch glycolate as superdisintegrants. The powder formulations were evaluated for pre-compression parameters such as bulk density, tapped density, Carr’s Index, Hausner’s ratio, and angle of repose. The tablets were evaluated for post-compression parameters such as the hardness, thickness, friability, weight variation, and disintegrating time in the oral cavity, in vitro drug release kinetics studies, and accelerated stability studies. The formulations were optimized by 22 factorial design.Results: The drug and excipients were compatible, and no interaction was found. The drug was pure, and all the pre-compression parameters were within Indian Pharmacopoeial Limits. Post-compression parameters were also within limits. The disintegration time was found to be 27 s for the formulation F29 containing Croscarmellose sodium (5%) and Mannitol as diluent, and in vitro drug release was found to be 99.67% in 30 min and follows first-order kinetics. This was also the optimized formulation by 22 factorial design with a p=0.013.Conclusion: The orodispersible tablets of eletriptan were successfully formulated, and the optimized formulation was determined that can be used in the treatment of migraine.


2021 ◽  
Vol 11 (1) ◽  
pp. 60-64
Author(s):  
Rishabh Bindal ◽  
Arpna Indurkhya

Due to more versatility and comfort, mouth dissolving tablets are the most advanced type of oral solid dosage forms. Compared to conventional tablets, it increases the effectiveness of APIs by dissolving within a minute in the oral cavity after contact with less saliva, without chewing and without the need for water for administration. Mouth Dissolving Tablets of Ketorolac tromethamine were prepared by direct compression method using various superdisintegrants like crospovidone, Croscarmellose sodium, and Sodium starch glycolate in different concentrations. Prepared tablets were evaluated for hardness, friability, weight variation, disintegration time, wetting time and in vitro drug release. Results of pre-compression and post-compression studies of all formulations were found within the standard limits. The tablets of all the batches were found to release more than 80% of drug in 5 minutes, which is the desired quality of mouth dissolving tablets that helps in faster absorption of the drug and quick onset of therapeutic effect. The the order of dissolution of various disintegrants was found to be Crospovidone˃ SSG˃ CCS. There was no significant variation in drug content of drug during stability studies for selected batch F3 in accelerated conditions over three months. It was concluded from the study that fast release of Ketorolac tromethamine from formulation F3 may reduce onset of drug action with better patient compliance. Keywords: Crospovidone, Croscarmellose sodium, Ketorolac tromethamine, Mouth dissolving tablets, Sodium starch glycolate, superdisintegrants.


Author(s):  
Suryakanta Swain ◽  
Chinam Niranjan Patra ◽  
Kahnu Charan Panigrahi ◽  
Muddana Eswara Bhanoji Rao ◽  
Rashmita Patro

The present research work was to evaluate the effect of compression force and concentration of superdisintigrant on tableting properties of metformin HCl. Initially powder mixtures of drug, croscarmellose sodium (0.62% to 10% w/w) and microcrystalline cellulose PH-200 sufficient quantity were prepared and evaluate their pre-compression parameters of different formulation batches such as angle of repose, bulk density, tapped density, Hausner’s ratio and compressibility index. The prepared powder mixtures of different batches were compressed into tablet using hydraulic pellet press machine at two optimized compression forces (77 MPa and 154 MPa). The post compression parameters such as thickness, diameter, weight variation, hardness, friability, drug content, disintegration time and in-vitro drug release study of the prepared tablets were evaluated. FT-IR and DSC studies showed that no incompatibility of the selected drug with the selected excipients. At selected compression force (77 MPa) and increased concentration of superdisintigration (0.62% to 10% w/w) of formulations F1 to F5 indicated that, disintegration time were periodically decreased up to F3 (1.25% w/w croscarmellose sodium). When the concen-tration of superdisintigrant increased up to 10% showed that disintegration time were periodically increased. Similarly, at compression force 154 MPa there is increased in tablet hardness but this effect was less significant when the superdisintegrant concentration more than 1.25% w/w. The hardness and drug content of all the formulations were found to be 3.59 ± 0.23 to 4.85 ± 0.01 kg/cm2 and 97.89 ± 0.10% to 99.42 ± 0.03% respectively. The in-vitro drug release data suggested that drug release of all the formulations followed Higuchi’s kinetic (R> = 0.998). The release rate exponent values (n) suggested the mechanism of drug release followed Quasi-Fickian diffusion mechanism at compression force 77 MPa and anomalous diffusion mechanism at compression force 154 MPa, respectively.


2015 ◽  
Vol 05 (01) ◽  
pp. 040-044
Author(s):  
D S Sandeep ◽  
R Narayana Charyulu ◽  
Prashant Nayak

AbstractIn the present investigation comparison of three different superdisintegrants was carried out by formulating orally disintegrating tablets. Promethazine HCl was used as model drug which is an antiemetic drug. Sodium starch glycolate, croscarmellose and crospovidone were selected as superdisintegrants and each one was used in three different concentrations (2%, 3.5% and 5%). The drug-polymer compatibility was ruled out by FTIR studies. A total of nine formulations (PF1-PF9) were made by direct compression. All prepared formulations were evaluated for weight variation, hardness, friability, drug content, disintegration time, wetting time and in vitro drug release parameters. The results of the evaluation parameters for all the nine formulations of promethazine HCl were within the standard limits. The in vitro drug release for promethazine HCl tablets of all the formulations (PF1-PF9) was carried out using phosphate buffer pH 6.8 as dissolution medium. Among all the formulations the tablets formulated with crospovidone (PF7-PF9) have shown 91.43 - 98.43% (maximum) drug release at the end of 10 min than sodium starch glycolate and croscarmellose, hence from the present work, it concluded that among three superdisintegrants crospovidone is the ideal superdisintegrant for formulating oral disintegrating tablets for promethazine HCl.


Mouth dissolving tablet disintegrates and dissolves rapidly in the saliva, within a few seconds without the need of drinking water or chewing. A mouth dissolving tablet usually dissolves in the oral cavity within 15 seconds to 3 minutes. Almotriptan malate is an anti migraine drug with bitter taste and shows hepatic metabolism. In the present work, Mouth dissolving tablets of almotriptan malate were prepared by direct compression method using sodium starch glycolate and croscarmellose sodium as superdisintegrant with a view to enhance patient compliance and to avoid gastric dysmotility which is common with migraine drugs and for fast action of drug. The prepared batches of tablets were evaluated for hardness, friability, drug content uniformity, wetting time, water-absorption ratio and in-vitro dispersion time. Short-term stability studies on the promising formulation indicated that there are no significant changes in drug content and disintegration time. Keywords: Almotriptan malate, Superdisintegrant, Sodium starch glycolate, Crosscarmellose sodium, Taste masking.


Author(s):  
Reecha Madaan ◽  
Rajni Bala ◽  
Tejeswini Vasisht ◽  
Ritima Sharma ◽  
Shivali Garg

Objective: The present research work was to formulate matrix tablets of diclofenac sodium using mucilage extracted from Tinospora cordifolia as a novel binding agent. Also, a comparative study on binding properties of mucilage and carbopol were performed.Methods: Fresh stems of Tinospora cordifolia were collected and mucilage was extracted out using standard method. The isolated mucilage was characterised for physicochemical parameters. Formulation of diclofenac sodium tablets (f1-f6) was done by dry granulation method using 2%, 4%, 6%, 8% and 10% concentration of mucilage of Tinospora cardifolia as natural binder. Carbopol 2% was used as synthetic matrix forming agent. Microcrystalline cellulose was used as diluents, magnesium stearate and talc as lubricant. The formulated tablets were evaluated for parameters such as tablet thickness, hardness, weight variation, disintegration time, percent friability and in vitro drug release characteristics. The drug release mechanism was determined by fitting the release data into different kinetics models.Results: The results revealed that all the pre and post compression parameters of the formulated tablets (f1-f6) were in compliance with pharmacopoeial limits. In vitro drug release studies showed that formulation f6 containing maximum concentration of mucilage release the drug in a most controlled and sustained manner with maximum drug release of 63.6% in 15 h in comparison with f1(2% carbopol) giving 80% release and was found to be stable for 3 mo as indicated by stability studies. The mechanism of drug releases from formulation f1-f6 was found to be polymer disentanglement and erosion. Preformulation studies using FTIR study reveals that there is no incompatibility between the pure drug and mucilage of tinospora cardifolia used.Conclusion: Based on the experimental findings it can be concluded that Tinospora cordifolia mucilage can be used as a release retardant agent in the formulation of sustained release dosage forms.


Author(s):  
Madhivardhana P ◽  
Rajalakshmi A N ◽  
Padmapriya S

The aim of this research work is to formulate and evaluate Levothroxine sodium immediate release tablets prepared by direct compression method . Five formulations were evaluated for different pre and post compression parameter and in vitro drug release studies.The results of pre compression parameters of formluation 1 to 5 were compared with prescribed limits. It showed that formulation 1 to 5 powder blend exhibit good flow property and compressibility property. The disintegration time of all formulation was found to be in the range 2mins 09 secsto 4mins 03 secs.Thus, based on evaluation of different parameters it was concluded that formulation of immediate release tablet Levothyroxine sodium was successfully done and F-5 showed almost 93% drug release at 45 mins in Alkaline borate buffer( pH 10). Keywords: Thyroid hormone (T4), Immediate release tablets, Direct compression, Dissolution.


Sign in / Sign up

Export Citation Format

Share Document