scholarly journals FORMULATION DEVELOPMENT AND IN VITRO ANTIOXIDANT AND ANTIDIABETIC EVALUATION OF ERIOBOTRYA JAPONICA BASED SELF NANO EMULSIFYING DRUG DELIVERY SYSTEM

Author(s):  
AMRIT PAL SINGH ◽  
GOPAL L. KHATIK ◽  
VIJAY MISHRA ◽  
NAVNEET KHURANA ◽  
NEHA SHARMA ◽  
...  

Objective: The aim of the present study was to develop and characterize self-nano emulsifying drug delivery system (SNEDDS) of methanolic extract of Eriobotrya japonica (Thunb.) Lindl. (E. japonica) leaves. Further in vitro antioxidant and antidiabetic potential of an optimized batch of SNEDDS was explored. Methods: Oil (Labrafil M 1944 CS), surfactant (Tween 80) and co-surfactant (Transcutol P) were selected on the basis of solubility of the methanolic extract. Twenty-seven batches of SNEDDS were prepared with different compositions of oil, surfactant and co-surfactant. The optimized batch was evaluated for its entrapment efficiency, droplet size, polydispersity index (PDI), zeta potential, transmission electron microscopy (TEM). Further, DPPH assay and α-amylase activity were also performed to check the antioxidant and antidiabetic potential of prepared SNEDDS. Results: The optimized design suggested that 10% of Labrafil M 1944CS, 30% of Tween 80 and 60% of Transcutol P could develop SNEDDS with 208 nm mean droplet size, 99.64% drug loading, 0.156 PDI and-6 mV zeta potential. TEM image confirmed the droplet size less than 100 nm and the spherical shape of SNEDDS. In vitro antioxidant and antidiabetic activities of SNEDDS revealed the increased efficacy as compared to that of the ascorbic acid and acarbose, respectively. Conclusion: The optimized batch of SNEDDS was found to improve the antioxidant and antidiabetic efficacy of methanolic extract of E. japonica.

2012 ◽  
Vol 62 (4) ◽  
pp. 563-580 ◽  

The aim of the study was to develop and evaluate a self- -emulsifying drug delivery system (SEDDS) formulation to improve solubility and dissolution and to enhance systemic exposure of a BCS class II anthelmetic drug, albendazole (ABZ). In the present study, solubility of ABZ was determined in various oils, surfactants and co-surfactants to identify the microemulsion components. Pseudoternary phase diagrams were plotted to identify the microemulsification existence area. SEDDS formulation of ABZ was prepared using oil (Labrafac Lipopfile WL1349) and a surfactant/ co-surfactant (Tween 80/PEG 400) mixture and was characterized by appropriate studies, viz., microemulsifying properties, droplet size measurement, in vitro dissolution, etc. Finally, PK of the ABZ SEDDS formulation was performed on rats in parallel with suspension formulation. It was concluded that the SEDDS formulation approach can be used to improve the dissolution and systemic exposure of poorly water-soluble drugs such as ABZ.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (06) ◽  
pp. 16-26
Author(s):  
V Suthar ◽  
◽  
M Gokel ◽  
S Butani ◽  
A Solanki

The aim of the present study was to develop self-emulsifying drug delivery system (SEDDS) of aceclofenac for potential improvement in the in vitro dissolution. The Food and Drug Control Agency (FDCA) has put more stress on the quality, safety and efficacy of the dosage form. The use of design of experiments and quality by Design (QbD) in the development of self emulsifying drug delivery system (SEDDS) containing aceclofenac is demonstrated. The optimum formulation contained Labrafil M 1944 CS, Tween 80 and Transcutol P. The systematic approach enabled us in identifying the design space. The results revealed that while devising the control strategies during manufacturing, more attention should be focused on the ratios of oil to surfactant and surfactant to co-surfactant. The drug was released at a faster rate due to a large surface area. The current approach enabled us to develop a dosage form which is economic, patient-friendly and does not require assistance of a doctor or nurse, especially at remote places at odd hours.


1970 ◽  
Vol 7 (1) ◽  
pp. 38-40
Author(s):  
Ankur Gupta ◽  
Arpna Indurkhya ◽  
S.C Chaturvedi ◽  
Ajit Varma

Spironolactone is aldosterone antagonist drug belonging to the category of potassium sparing diuretics administered orally that has absolute bioavailability of only 68% due to the poor aqueous solubility. The main aim of the present work was to develop a self emulsifying drug delivery system (SEDDS) to enhance the oral absorption of spironolactone. The solubility of spironolactone in various oils, surfactants, and co surfactants was determined. Pseudo ternary phase diagrams were constructed using castor oil, Tween 80, and polyethylene glycol 400, and distilled water to identify the efficient self-micro emulsion region. Prepared self emulsifying drug delivery system was further evaluated for its emulsification time, drug content, optical clarity, droplet size, zeta potential, in vitro drug release. The results showed that 96.16% drug was released from the SEDDS formulation in 3 hrs. This demonstrated an enhancement in the drug release and thereby, absorption of the drug through the membrane, this was significantly higher than that of the plain drug suspension. Thus, the above findings support that the utility of SEDDS to enhance solubility and dissolution of poorly water soluble compounds which may result in improved Therapeutic performance.


Author(s):  
Phan Thi Nghia ◽  
Tran Thi Hai Yen ◽  
Vu Thi Thu Giang

This study develops the in-house specifications of self-nanoemulsifying drug delivery system (SNEDDS) containing rosuvastatin based on the following criteria: description, identification, droplet size (≤200 nm) and polydiversity index (not more than 0.3), drug proportion in the oil phase (≥ 90.0%), assay (≥ 95.0% and ≤105.0% of the labeled amount of rosuvastatin (C22H28FN3O6S). The criteria were validated and the results were suitable for identification and determination of rosuvastatin in SNEDDS. Additionally, the results of the stability study show that the rosuvastatin SNEDDS met the criteria of description, droplet size, PDI, assay and drug rate in the oil phase for 12-month storage under the long-term condition (12 months) and 6 months on accelerated condition. Keywords Rosuvastatin, SNEDDS, specification, droplet size, entrapment efficiency. References [1] A. Luvai, W. Mbagaya, A.S. Hall, I.H. Barth, Rosuvastatin: A Review of the Pharmacology and Clinical Effectiveness in Cardiovascular Disease, Clinical Medicine Insights: Cardiology 6 (2012) 17–33. https://doi.org/10.4137/CMC.S4324. [2] K. Balakumar, C.V. Raghavan, N.T. Selvan, R.H. Prasad, S. Abdu, Self nanoemulsifying drug delivery system (SNEDDS) of Rosuvastatin calcium: Design, formulation, bioavailability and pharmacokinetic evaluation, Colloids and Surfaces B: Biointerfaces. 112 (2013) 337–343. http://dx.doi.org/10.1016/j.colsurfb.2013.08.025. [3] S. Elkadi, S. Elsamaligy, S. Al-Suwayeh, H. Mahmoud, The Development of Self-nanoemulsifying Liquisolid Tablets to Improve the Dissolution of Simvastatin, American Association of Pharmaceutical Scientists 18(7) (2017) 2586–2597. https://doi.org/10.1208/s12249-017-0743-z. [4] D. Patel, K.K. Sawant, Self Micro-Emulsifying Drug Delivery System: Formulation Development and Biopharmaceutical Evaluation of Lipophilic Drugs, Current Drug Delivery 6 (2009) 419–424. https://doi.org/10.2174/156720109789000519. [5] S.D. Maurya, R.K.K. Arya, G Rajpal, R.C. Dhakar, Self-micro emulsifying drug delivery systems (SMEDDS): A review on physico-chemical and biopharmaceutical aspects, Journal of Drug Delivery and Therapeutics 7(3) (2017) 55–65. https://doi.org/10.22270/jddt.v7i3.1453.[6] P. Borman, D. Elder, Q2(R1) Validation of analytical procedures: text and methodology, in: A. Teasdale, D. Elder, R.W. Nims (Eds), ICH quality guidelines: an implementation guide, John Wiley & Sons Inc., Hoboken, 2018, pp. 127-166. [7] United States Pharmacopoeia 41, rosuvastatin tablets monograph.          


2021 ◽  
Vol 33 (9) ◽  
pp. 2182-2190
Author(s):  
Sabitri Bindhani ◽  
Snehamayee Mohapatra ◽  
Rajat Kumar Kar

This study was planned to increase the intestinal permeability and thereby bioavailability of eprosartan mesylate (EPM) by designing a self-microemulsifying drug delivery system (SMEDDS) by the use of vegetable oils. Various SMEDDS-based formulations were prepared with oleic acid and peppermint oil. Tween 80 was used as surfactant and PEG 400 as co-surfactant. Pseudo ternary phase diagrams were constructed for identifying emulsification region between 1:1, 1:2, 2:1, 3:1 ratio of SCOS mix. Eight batches of SMEDDS were found to be thermodynamically stable and from which SMEDDSOF9 and PF5 were best formulations due to their highest drug content, minimum particle size. They have shown highest release of drug in vitro and higher in vitro drug diffusion and ex vivo permeation analysis than pure drug. FTIR study ascertained no incompatibility between drug and excipients present in formulation. From the accelerated stability study, slight effect on particle size and zeta potential, assay content along with cumulative % of drug release was found. The results demonstrated the SMEDDS of EPM are potent drug delivery system to increase dissolution rate and bioavailability of drug via increased intestinal permeability and consequently improving the therapeutic efficacy of eprosartan mesylate.


2021 ◽  
Author(s):  
Reza Davarnejad ◽  
Kiyana Layeghy ◽  
Meysam Soleymani ◽  
Arvin Ayazi

Abstract Quercetin, a natural polyphenolic compound, has attracted much attention due to its great therapeutic potential against various types of diseases. But clinical applications of quercetin are limited due to its poor aqueous solubility and low bioavailability. The main purpose of this research was to evaluate the therapeutic potential of quercetin-loaded Pluronic F127 (PF127)/Tween 80 mixed nanomicelles as a passive targeted drug delivery system for breast cancer therapy. To this end, quercetin-loaded mixed nanomicelles with different mass ratios of drug:PF127:Tween 80 were prepared by the thin-film hydration method. The highest drug loading and entrapment efficiency were obtained to be 2.3% and 98.0%, respectively, for mixed micelles with drug:PF127:Tween 80 ratio of 1:40:15. The physical interactions of quercetin with PF127 and Tween 80 at optimized ratio was investigated by XRD and FTIR analyses. The mean hydrodynamic size and surface charge of prepared nanomicelles, measured by DLS and zeta potential analyses, were 22.1 nm and -7.63 mV, respectively. The results of in-vitro drug release experiments showed that, the mixed micellar system has a prolong and sustained release behavior compared to the solution of free quercetin. Moreover, the in-vitro cytotoxicity studies of quercetin-loaded mixed nanomicelles on breast cancer cells (MCF-7) revealed that, the encapsulated drug have a lower IC50 value (8.9 µg/mL) compared to the free drug (49.2 µg/mL). Our results suggest that, quercetin-loaded mixed nanomicelles can be considered as a promising drug delivery system with prolonged release and potentiated cytotoxicity against breast cancer cells.


2019 ◽  
Vol 10 (4) ◽  
pp. 3304-3314
Author(s):  
Sabitri Bindhani ◽  
Snehamayee Mohapatra ◽  
Rajat Ku. Kar ◽  
Utkalika Mahapatra

Eprosartan Mesylate (EM), an angiotensin II receptor blocker used in the treatment of high blood pressure. But poor solubility and bioavailability (13%) of eprosartan mesylate is a major challenging factor for improving its drug release rate. The main objective of the present work to develop and characterize self micro emulsifying drug delivery system of eprosartan mesylate by using compatible oil, surfactant and co-surfactant. For the selection of oil, surfactant and cosurfactant, solubility screening studies has been carried out. The nine formulations are prepared using peppermint oil, tween 80 and PEG 400. A pseudo ternary phase diagram was prepared to determine the self emulsion region. Four optimized formulations were prepared at 1:1 ratio(a mixture of surfactant and cosurfactant). These four formulations were evaluated for self-emulsification time, droplet size measurement, drug content analysis robustness to dilution test, viscosity analysis, f.t.i.r. The study and in-vitro diffusion studies. The ratio of scosmix (a mixture of surfactant and cosurfactant) of optimized formulation (pf5) was varied to pfa1 (2:1), pf2 (3:1), pfa3 (1:2) and compared with pure drug. The formulation having pfa1 (2:1) shown drug release of 93.13 % in 330 minutes where as pure drug showed a drug release of 54.51% in 330 minutes. So the prepared SMEDDS formulations were efficient and better than the pure drug, and it followed Korsmeyer pappes due to highest r2 value followed by Hixon crowel. It was concluded that incorporation of eprosartan mesylate in selfmicroemulsifying system is a great potential for improving the solubility and dissolution rate of eprosartan mesylate.


Author(s):  
Vishal N Kushare ◽  
Saravanan S

The goal of this research was to formulate and test invitro the self-nano emulsifying drug delivery system (SNEDDS) of poorly water-soluble herbal material. Linalool, an essential of Coriandrum sativum with anti-epileptic activity, was isolated from Coriandrum sativum by using Soxhlet extraction method followed by column chromatography and fractionates are concentrated under reduced pressure by using rotary flash evaporator. It is low water soluble material; unpredictable dissolution and low bioavailability make it very difficult to administer linalool orally.The captex-200 oil was exhibited maximum solubility of linalool. Thus, it was chosen as the oil phase, while Tween 80 and PEG-200 were chosen as surfactant and co-surfactant respectively for the preparation of linalool SNEDDS. For the determination of existence zone of nanoemulsion, pseudo ternary phase diagram was developed using the Prism Software by using water titration method. Self-nanoemulsion are evaluated for scanning electron microscopy (SEM), particle size analysis, polydispersity index, zeta potential and invitro drug release.The s9 formulation showed 97.72% cumulative release higher than other selected formulations(S4-S8). The S9 formulation showed promising result on droplet size, zeta potential, polydispersity index, invitro drug dissolution. It was concluded that SNEDDS formation from captex-200, tween 80, PEG-200, Smix (4:1), is a promising approach to enhancing substance solubility and the pace of dissolution.


Sign in / Sign up

Export Citation Format

Share Document