scholarly journals FORMULATION AND EVALUATION OF LORAZEPAM ENCAPSULATED COLLAGEN/PECTIN BUCCAL PATCH

Author(s):  
LAKSHMI V. S. ◽  
REVATHY B. MENON ◽  
KEERTHANA RAJU ◽  
AISWARYA M. U. ◽  
SREEJA C. NAIR

Objective: To formulate and characterize Lorazepam loaded buccal patches using mucoadhesive, biodegradable, natural polymers-pectin (hydrophilic) and collagen (lipophilic) for treating epileptic seizures. Methods: Lorazepam loaded buccal patches were prepared by solvent casting method and were subjected to various Physico-chemical evaluation parameters to find the optimized buccal patch. The in vitro drug release study and ex vivo permeation study was carried out. The stability study and histopathological study of optimized Lorazepam loaded buccal patch was also carried out. Results: From in vitro drug release study, it was found that Lorazepam loaded buccal patch (B4) exhibited maximum drug release of 96.16 %±0.07 than other formulations at the end of 4 h, indicating an initial burst release followed by sustained release with release kinetics as Higuchi diffusion model. Based on the in vitro drug release, % drug content, % swelling index, folding endurance, B4 formulation was considered as optimised formulation and was further characterized. Ex vivo permeation study revealed that the cumulative amount of drug permeated from optimised Lorazepam loaded buccal patch (B4) was higher (3831.4±0.21µg/cm2) than marketed Midazolam buccal solution (1724±0.12 µg/cm2) and control drug solution (895.42±0.07 µg/cm2) with an enhancement ratio of 4.8. B4 formulation also showed a higher flux value (12.52±0.02µg/cm2/hr) compared to marketed formulation (5.732±0.01 µg/cm2) and control drug solution (2.563±0.03 µg/cm2) of P<0.05. The histopathological study using bovine buccal mucosa revealed that the B4 formulation is safe for buccal application. The stability study confirmed that B4 formulation is stable in both room and refrigeration conditions. Hence the formulated Lorazepam loaded buccal patch seems to be a promising carrier for the enhanced buccal delivery of Lorazepam in treating epileptic seizures. Conclusion: The formulated Lorazepam loaded collagen/pectin buccal patch was found to be an efficient and stable route for the buccal delivery of Lorazepam in treating acute epileptic seizures which could be further explored scientifically.

2019 ◽  
Vol 9 (6-s) ◽  
pp. 110-118
Author(s):  
CH. Suryakumari ◽  
M. Narender ◽  
K. Umasankar ◽  
Siva Prasad Panda ◽  
S.N. Koteswara Rao ◽  
...  

The present investigation is concerned with formulation and evaluation of Transdermal gels of Tacrolimus, anti-psoriasis drug, to circumvent the first pass effect and to improve its bioavailability with reduction in dosing frequency and dose related side effects. Twelve formulations were developed with varying concentrations of polymers like Carbopol 934P, HPMCK4M and Sodium CMC. The gels were tested for clarity, Homogeneity, Spreadability, Extrudability, Viscosity, surface pH, drug Content uniformity, in-vitro drug diffusion study and ex-vivo permeation study using rat abdominal skin. FTIR studies showed no evidence on interactions between drug, polymers and excipients. The best in-vitro drug release profile was achieved with the formulation F4 containing 0.5 mg of exhibited 6 hr drug release i.e. 98.68 % with desired therapeutic concentration which contains the drug and Carbopol 934p in the ratio of 1:2. The surface pH, drug content and viscosity of the formulation F4 was found to be 6.27, 101.3% and 3, 10,000cps respectively. The drug permeation from formulation F4 was slow and steady and 0.89gm of tacrolimus could permeate through the rat abdominal skin membrane with a flux of 0.071 gm hr-1 cm-2. The in-vitro release kinetics studies reveal that all formulations fit well with zero order kinetics followed by non-Fickian diffusion mechanism. Keywords: Transdermal gel, Viscosity, In-vitro drug release, In-vitro drug release kinetics study, Ex-vivo permeation study


Author(s):  
Hussein K. Alkufi ◽  
Hanan J. Kassab

     Objective: The purpose of this study to develop and optimize nasal mucoadhesive in situ gel IG of sumatriptan ST (serotonin agonist) to enhance nasal residence time for migraine management.      Method: Cold method was used to prepare ST nasal in-situ gel, using thermosensitive polymers (poloxamer 407  and/or poloxamer 188) with a mucoadhesive polymer (hyaluronic acid HA) which were examined for gelation temperature and gelation time, pH, drug content, gel strength, spreadability, mucoadhesive force determination, viscosity,  in-vitro drug release, and the selected formula was subjected to ex-vivo permeation study and histological evaluation of the sheep mucosal tissue after application.     Results: The results showed that the formula IG7 prepared from poloxamer 407(19%), poloxamer188 (4%) and HA (0.5%)   had an optimum gelation temperature (32.66±1.52°C), gel  strength (43.66± 1.52 sec),  mucoadhesive force (8067.93± 746.45dyne\cm2), in-vitro drug release (95.98%) over 6hr, ex-vivo permeation study release (89.6%)  during the 6 h. study with no  histological or pathological change in the nasal sheep tissue.     Conclusion: The ease of administration via a nasal drop of ST coupled with less frequent administration and prolong drug release, will enhance patient compliance.


Author(s):  
Mohammad Irshad Reza ◽  
Divya Goel ◽  
Rahul Kumar Gupta ◽  
Musarrat Hussain Warsi

Objective: The objective of the present work was to formulate and characterize nano dispersive gel (NDG) for topical delivery of water-insoluble antifungal agent ketoconazole in order to enhance its solubility, penetration through the skin and antifungal activity.Methods: Nano dispersion of the drug was first prepared by swollen micelles technique (SMT) using tween 80 and chloroform which is then incorporated into the gel using carbopol 934. Ten formulations of ketoconazole loaded NDG was prepared and characterized for different physicochemical parameters like homogeneity, pH, spreadability, extrudability, practical yield, drug content, in vitro drug release, ex vivo permeation study, and biological parameter antifungal activity.Results: The formulated topical preparation exhibit pH in the range of 6.5 to 7.4, and unveiled excellent homogeneity, spreadability and extrudability. Out of 10 formulations, formulation F4 showed maximum drug content of 95.56±1.13% and practical yield of 97.23±0.51%. The in vitro drug release studies were performed using pH 7.4 phosphate buffer. Formulation F4 showed best in vitro drug release 96.52±0.52% at the end of 24 h of study. Ex vivo permeation study of formulation F4 carried out using franz diffusion cell, also manifested good permeation and flux of drug across the chicken skin. Antifungal activity test of formulation F4 was carried out by the cup plate method using Aspergillus niger strain against marketed ketoconazole unveiled higher antifungal activity than marketed one.Conclusion: The study confirmed formulation F4 to be an optimized and promising formulation for the effective treatment of topical fungal infections with enhanced solubility and penetration through the skin.


2019 ◽  
Vol 9 (3) ◽  
pp. 51-59
Author(s):  
JESINDHA BEYATRICKS ◽  
, Dhananjaya

The aim of this study was to formulate and evaluate the oral fast-dissolving film of Vitamin B6 for the effective management of motion sickness and vomiting during pregnancy. Fast-dissolving films were prepared by the solvent-casting method using different polymers, HPMC-15 and Pullulan, along with Propylene glycol as a plasticizer. The Fourier-transform infrared study for the drug-polymer interaction was carried out. Evaluation of physical parameters such as physical appearance, surface texture, uniformity of weight, uniformity of strip thickness, surface pH, folding endurance, uniformity of drug content and percentage of moisture absorption were performed. Kinetic data analysis for the release study and the stability study were also performed. Results of uniformity of weight, thickness, folding endurance, surface pH, percentage drug content, tensile strength and percentage elongation of all the films were found to be satisfactory. The Fourier-transform infrared study indicated that there was no interaction between the drug and the polymers. The in-vitro drug release study showed that a better rate of drug release was achieved by formulations F4 and F8 compared with other formulations. The stability study did not show any significant difference in the external appearance, the drug content and the in-vitro drug release. In conclusion present study suggested that fast dissolving films has a better ability to cross the sublingual barrier at a faster rate, and hence the delivery system was found to be promising as it has the potential of overcoming the drawbacks associated with tablet formulations available in the market presently. Keywords: Fast-dissolving film, Vitamin B6, HPMC-15, Pullulan gum, Mango peel pectin, Crospovidone, solvent casting


Author(s):  
SUJAID THAYYILAKANDY ◽  
GAYATHRI P. S. ◽  
ARJUN K. K. ◽  
GAYATHRI KRISHNAKUMAR ◽  
SREEJA C. NAIR

Objective: To formulate and characterize. Phenobarbital sodium loaded sublingual patch using biodegradable, mucoadhesive, fast-dissolving natural polymer pullulan for immediate management of epileptic seizures. Methods: Phenobarbital sodium loaded sublingual patches were prepared by the solvent casting method and were subjected to various physicochemical evaluation parameters to find the optimized sublingual patch. The in vitro drug release study and kinetic model of the optimized formulation was also carried out. The stability study of the optimized Phenobarbital sodium loaded sublingual patch was also done. Results: From in vitro drug release study, it was found that Phenobarbital sodium loaded sublingual patch (S4) exhibited a maximum drug release of 96.24±1.27% at the end of 60 min compared to other formulations indicating a faster drug release from the formulation with release kinetics as Higuchi diffusion model. In fact, a notable release data was obtained between 0.5 to 8 min by all formulations, specifically S4 formulation (20.84±1.97% and 77.22±2.41% drug release at the end of 0.5 min and 8 min respectively) showed a better percentage release profile in comparison with other formulations. Such a trend is vital to deliver the drug at a faster rate to promote immediate effect for managing the fatal and complicated seizure. Considering the physicochemical property and in vitro drug release data, S4 formulation was regarded as an optimized one. The stability study also confirmed that S4 formulation is stable at refrigeration conditions. Conclusion: The formulated Phenobarbital sodium loaded sublingual patch is an effective drug delivery carrier which enables faster drug release to manage epileptic seizure.


Author(s):  
Kiran Kumar ◽  
Gurunath S ◽  
P Srikanth ◽  
Ajitha M ◽  
Y Madhusudan Rao

The present research work was focused to develop a mucoadhesive tablet dosage form for dipyridamole, which shows pH dependent solubility, it is highly soluble in acidic pH and as the pH increases the solubility of the drug decreases. Hence it was selected as the drug candidate for the present research. Mucoadhesive tablets of Dipyridamole were successfully prepared by using polymers like HPMC K4M, Chitosan and Isabgul husk by wet granulation method. FT-IR studies showed that there is no incompatibility between drug, polymer and various excipients used in the formulations. Formulated tablets have shown satisfactory results for physical parameters and complied with the pharmacopeial limits. The ex-vivo mucoadhesive strength and mucoadhesive force was found to be in the range of 16.15- 21.20 g and 1.56-2.06 N. Total ex-vivo mucoadhesive time was observed in between 10 to 12 hours. The in-vitro drug release was found to be more than 90% for the formulations FMD2, FMD3 and FMD8, up to 12 hours. Based on in-vitro drug release and mucoadhesive properties, formulation FMD2 was selected as optimized formulation. The dissolution data were further characterized by fitting the data into various kinetic models. The drug release from the matrices followed zero order with non-fickian release (diffusion + erosion controlled) for the optimized formulation. The optimized formulation was further subjected to swelling studies, which showed a swelling index of 286% up to 24 hours. The results indicated that the selected polymers were of swellable type. The stability studies were carried for 6 months as per ICH and WHO guidelines and the results of the stability study revealed that the optimized formulation is stable during the storage period. The in-vivo radiographic studies in fed condition, for the Mucoadhesive tablets (FMD2) showed a gastric residence time of more than 6 hours. When the radiographic images were taken at different time intervals and it was found to be in a particular location, which suggested that the retention of the dosage form might be due to the adhesion of dosage form to the gastric mucosa. 


2018 ◽  
Vol 10 (4) ◽  
pp. 82
Author(s):  
Koyel Kar ◽  
R. N. Pal ◽  
Gouranga Nandi

Objective: The objective of the present work was to conduct accelerated stability study as per international council for harmonisation (ICH) guidelines and to establish shelf life of controlled release dosage form of ropinirole hydrochloride and pramipexole dihydrochloride microspheres for a period of 6 mo.Methods: Most optimized batch of ropinirole hydrochloride and pramipexole dihydrochloride (F12 and M12 respectively) were selected and subjected to exhaustive stability testing by keeping the sample in stability oven for a period of 3 and 6 mo. Various parameters like surface morphology, particle size, drug content, in vitro drug release and shelf life were evaluated at 3 and 6 mo period. The surface morphology of the formulated microspheres was determined by scanning electron microscopy (SEM). The particle size of the microspheres was estimated by optical microscopy method. The drug content was assayed by the help of ultra-violet spectrophotometer (UV). The in vitro drug release was performed by using Paddle II type dissolution apparatus and the filtrate was analyzed by UV spectrophotometer. The shelf life of the optimized microspheres was calculated by using the rate constant value of the zero-order reaction.Results: A minor change was recorded in average particle size of F12 and M12 microspheres after storage for 6 mo. For F12 and M12, initially the particle size was 130.00 µm and 128.92 µm respectively and after 6 mo it was found to be 130.92 µm and 128.99 µm respectively. There was no change in surface morphology of F12 and M12 microspheres after 6 mo of storage. The shape of microspheres remained spherical and smooth after 6 mo. An insignificant difference of drug content was recorded after 6 mo compared to the freshly prepared formulation. For F12 and M12, 94.50% and 93.77% of the drug was present initially and after 6 mo 94.45% and 93.72% of the drug was recorded. In vitro drug release was recorded after 6 mo for F12 and M12. Initially, 97.99% and 97.69% of the drug was released till 14th hour respectively for F12 and M12. After 6 mo, 98.23% and 97.99% of the drug was released respectively. The percentage residual drug content revealed that the degradation of microspheres was low. Considering the initial percentage residual drug content as 100%, 99.94% of the drug was recorded for both F12 and M12. The shelf life for F12 and M12 was found to be 10 y 52 d and 10 y 70 d respectively which were determined by the zero-order kinetic equation.Conclusion: A more or less similar surface morphology, particle size, drug content and percent of drug release before and after stability study confirmed the stability of F12 and M12 microspheres after storage for 6 mo and prove the efficacy of the microspheres in the site-specific delivery of drugs in Parkinson’s disease.


Drug Research ◽  
2020 ◽  
Vol 70 (08) ◽  
pp. 367
Author(s):  
Jaideo Pandey ◽  
Ravi Shankar ◽  
Manish Kumar ◽  
Kuldeep Shukla ◽  
Beena Kumari

Abstract Background Granisetron is a serotonin 5-HT3 receptor antagonist used as an antiemetic to treat nausea and vomiting following chemotherapy and radiotherapy. Its main effect is to reduce the activity of the vagus nerve, which is a nerve that activates the vomiting center in the medulla oblongata. Objectives In this research mucoadhesive microspheres were developed in order to carry out the absorption of drug through nasal mucosa with the aim to improve therapeutic efficacy, avoid hepatic first pass metabolism and increase residence time. Material and Methods Mucoadhesive microspheres of Granisetron using chitosan as polymer were prepared by emulsification cross-linking method to increase the residence time on the mucosa. The surface of prepared microspheres was characterized by SEM (Scanning electron microscopy) and evaluated for particle size, encapsulation efficiency, production yield, swelling ability, in-vitro mucoadhesion, in-vitro drug release and stability study. Result Among all the formulations F6 with drug/polymer ratio of 1:3 displayed the best result. On drug release kinetic model study, all the formulations follow Zero order. Stability studies revealed that the microspheres kept at 25±2°C and 60±5% RH showed the maximum stability. Conclusion After all the evaluation parameters and result obtained it can be said that these results confirmed the suitability of Granisetron mucoadhesive chitosan microspheres for nasal delivery system.


2017 ◽  
Vol 21 (4) ◽  
pp. 1587-1594 ◽  
Author(s):  
Qing Liu ◽  
Shufa Zhou ◽  
Zeyu Zhao ◽  
Ting Wu ◽  
Rong Wang ◽  
...  

In order to improve the stability, utilization ratio and anti-tumor effect of curcumin drug, a set of curcumin-loaded nanofiber membranes with drug releasing property were fabricated using silk fibroin and polyethylene glycol. Various curcumin-loaded silk fibroin nanofiber membranes with different components and drug loading percentages were prepared using electrospinning technology. The morphology structure, mechanical properties, secondary structure, drug release property in vitro, and their interaction effects of the curcumin-loaded silk fibroin nanofiber membranes were examined. The result of in-vitro drug release experiment showed that the curcumin can be released stably up to 350 hours, the drug releasing speed increased with the decrease of the diameter of the fibers. The stability and utilization ratio of curcumin was improved after loading with curcumin-loaded silk fibroin nanofiber membranes. In conclusion, it can be used as a control drug release system alternately in the future.


Sign in / Sign up

Export Citation Format

Share Document