scholarly journals Development of Fast Dissolving Oral Films Containing Vitamin B6 for Nausea and Vomiting of Pregnancy (NVP)

2019 ◽  
Vol 9 (3) ◽  
pp. 51-59
Author(s):  
JESINDHA BEYATRICKS ◽  
, Dhananjaya

The aim of this study was to formulate and evaluate the oral fast-dissolving film of Vitamin B6 for the effective management of motion sickness and vomiting during pregnancy. Fast-dissolving films were prepared by the solvent-casting method using different polymers, HPMC-15 and Pullulan, along with Propylene glycol as a plasticizer. The Fourier-transform infrared study for the drug-polymer interaction was carried out. Evaluation of physical parameters such as physical appearance, surface texture, uniformity of weight, uniformity of strip thickness, surface pH, folding endurance, uniformity of drug content and percentage of moisture absorption were performed. Kinetic data analysis for the release study and the stability study were also performed. Results of uniformity of weight, thickness, folding endurance, surface pH, percentage drug content, tensile strength and percentage elongation of all the films were found to be satisfactory. The Fourier-transform infrared study indicated that there was no interaction between the drug and the polymers. The in-vitro drug release study showed that a better rate of drug release was achieved by formulations F4 and F8 compared with other formulations. The stability study did not show any significant difference in the external appearance, the drug content and the in-vitro drug release. In conclusion present study suggested that fast dissolving films has a better ability to cross the sublingual barrier at a faster rate, and hence the delivery system was found to be promising as it has the potential of overcoming the drawbacks associated with tablet formulations available in the market presently. Keywords: Fast-dissolving film, Vitamin B6, HPMC-15, Pullulan gum, Mango peel pectin, Crospovidone, solvent casting

2018 ◽  
Vol 10 (4) ◽  
pp. 82
Author(s):  
Koyel Kar ◽  
R. N. Pal ◽  
Gouranga Nandi

Objective: The objective of the present work was to conduct accelerated stability study as per international council for harmonisation (ICH) guidelines and to establish shelf life of controlled release dosage form of ropinirole hydrochloride and pramipexole dihydrochloride microspheres for a period of 6 mo.Methods: Most optimized batch of ropinirole hydrochloride and pramipexole dihydrochloride (F12 and M12 respectively) were selected and subjected to exhaustive stability testing by keeping the sample in stability oven for a period of 3 and 6 mo. Various parameters like surface morphology, particle size, drug content, in vitro drug release and shelf life were evaluated at 3 and 6 mo period. The surface morphology of the formulated microspheres was determined by scanning electron microscopy (SEM). The particle size of the microspheres was estimated by optical microscopy method. The drug content was assayed by the help of ultra-violet spectrophotometer (UV). The in vitro drug release was performed by using Paddle II type dissolution apparatus and the filtrate was analyzed by UV spectrophotometer. The shelf life of the optimized microspheres was calculated by using the rate constant value of the zero-order reaction.Results: A minor change was recorded in average particle size of F12 and M12 microspheres after storage for 6 mo. For F12 and M12, initially the particle size was 130.00 µm and 128.92 µm respectively and after 6 mo it was found to be 130.92 µm and 128.99 µm respectively. There was no change in surface morphology of F12 and M12 microspheres after 6 mo of storage. The shape of microspheres remained spherical and smooth after 6 mo. An insignificant difference of drug content was recorded after 6 mo compared to the freshly prepared formulation. For F12 and M12, 94.50% and 93.77% of the drug was present initially and after 6 mo 94.45% and 93.72% of the drug was recorded. In vitro drug release was recorded after 6 mo for F12 and M12. Initially, 97.99% and 97.69% of the drug was released till 14th hour respectively for F12 and M12. After 6 mo, 98.23% and 97.99% of the drug was released respectively. The percentage residual drug content revealed that the degradation of microspheres was low. Considering the initial percentage residual drug content as 100%, 99.94% of the drug was recorded for both F12 and M12. The shelf life for F12 and M12 was found to be 10 y 52 d and 10 y 70 d respectively which were determined by the zero-order kinetic equation.Conclusion: A more or less similar surface morphology, particle size, drug content and percent of drug release before and after stability study confirmed the stability of F12 and M12 microspheres after storage for 6 mo and prove the efficacy of the microspheres in the site-specific delivery of drugs in Parkinson’s disease.


2018 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Manar Adnan Tamer ◽  
Shaimaa Nazar Abd-al Hammid ◽  
Balqis Ahmed

Objective: The aim of this study was to formulate and in vitro evaluate fast dissolving oral film of practically insoluble bromocriptine mesylate to enhance its solubility and to improve its oral bioavailability by avoiding first pass effect as well as to produce an immediate release action of the drug from the film for an efficient management of diabetes mellitus type II in addition to an improvement of the patient compliance to this patient-friendly dosage form.Methods: The films were prepared by the solvent casting method using hydroxypropyl methylcellulose of grades (E3, E5, E15), polyvinyl alcohol (PVA), pectin and gelatin as film-forming polymers in addition to polyethene glycol 400 (PEG400), propylene glycol (PG) and glycerin were used as a plasticizer. Poloxamer 407 was used as a surfactant, sodium saccharin as a sweetening agent, citric acid as a saliva stimulating agent, vanilla as a flavouring agent and crospovidone as a super disintegrant. The prepared films then tested for physical characterization, thickness, weight uniformity, mechanical characteristics (folding endurance, tensile strength, percent elongation and Young's modulus), surface pH, in vitro disintegration time, drug content and an in vitro drug release.Results: Films were found to be satisfactory when evaluated for physical characterization, thickness, weight uniformity, mechanical tests, in vitro disintegration time, folding endurance, drug content and an in vitro drug release. The surface pH of all the films was found to be neutral or minor change. Films in vitro drug release studies were also done using USP dissolution apparatus type II (paddle type). The in vitro drug release profile in the optimized formulation F14 was gave 86.8 % of drug released at 2 min. The optimized formulation F14 was also showed satisfactory pH (6.2±0.2), drug content (99.2±0.5%), the disintegration time of 9.2±0.1 seconds and the time needed for 80% of medication to be released (T80 %) was 1.35 minute.Conclusion: The bromocriptine mesylate fast dissolving oral film was formulated. The given film disintegrates within nine seconds which release the drug rapidly and gives an action.


Author(s):  
LAKSHMI V. S. ◽  
REVATHY B. MENON ◽  
KEERTHANA RAJU ◽  
AISWARYA M. U. ◽  
SREEJA C. NAIR

Objective: To formulate and characterize Lorazepam loaded buccal patches using mucoadhesive, biodegradable, natural polymers-pectin (hydrophilic) and collagen (lipophilic) for treating epileptic seizures. Methods: Lorazepam loaded buccal patches were prepared by solvent casting method and were subjected to various Physico-chemical evaluation parameters to find the optimized buccal patch. The in vitro drug release study and ex vivo permeation study was carried out. The stability study and histopathological study of optimized Lorazepam loaded buccal patch was also carried out. Results: From in vitro drug release study, it was found that Lorazepam loaded buccal patch (B4) exhibited maximum drug release of 96.16 %±0.07 than other formulations at the end of 4 h, indicating an initial burst release followed by sustained release with release kinetics as Higuchi diffusion model. Based on the in vitro drug release, % drug content, % swelling index, folding endurance, B4 formulation was considered as optimised formulation and was further characterized. Ex vivo permeation study revealed that the cumulative amount of drug permeated from optimised Lorazepam loaded buccal patch (B4) was higher (3831.4±0.21µg/cm2) than marketed Midazolam buccal solution (1724±0.12 µg/cm2) and control drug solution (895.42±0.07 µg/cm2) with an enhancement ratio of 4.8. B4 formulation also showed a higher flux value (12.52±0.02µg/cm2/hr) compared to marketed formulation (5.732±0.01 µg/cm2) and control drug solution (2.563±0.03 µg/cm2) of P<0.05. The histopathological study using bovine buccal mucosa revealed that the B4 formulation is safe for buccal application. The stability study confirmed that B4 formulation is stable in both room and refrigeration conditions. Hence the formulated Lorazepam loaded buccal patch seems to be a promising carrier for the enhanced buccal delivery of Lorazepam in treating epileptic seizures. Conclusion: The formulated Lorazepam loaded collagen/pectin buccal patch was found to be an efficient and stable route for the buccal delivery of Lorazepam in treating acute epileptic seizures which could be further explored scientifically.


Author(s):  
Hir. R. Mehta ◽  
Vijay K. Patel

The present invention was aimed to formulate and evaluate Lafutidine gastro retentive films. The films were prepared by solvent casting technique using different film forming polymers like HPMC and Ethyl cellulose. PEG 400 used as a plastsizer. The prepared films were evaluated for number of parameters like Physical appearance, Weight variation, Thickness, Folding endurance, Tensile strength, unfolding behavior, floating properties, drug content and In vitro drug release studies. From the trial batches the best release for gastroretentive film was shown by formulation T5 (Ethyl cellulose and PEG 400). Formulation T5 exhibited good appearance, better mechanical strength with acceptable flexibility. Also, formulation T5 was given more than 90 % drug released after 12 hr and 97.56 % Drug content.  For optimization of formulation, 32 factorial design was applied by taking Ethyl cellulose and PEG 400 as an independent variables. Drug release at 8 hour and folding endurance selected as dependent variables. Based on drug release study, L8 batch found most satisfactory in all formulation and the effect of Ethyl cellulose and PEG 400 found significant. L8 batch found stable during stability study. Key words: Lafutidine, Floating Films, Ethyl Cellulose.


Author(s):  
DIKSHA S. CHODANKAR ◽  
SACHI S. KUDCHADKAR ◽  
RAJASHREE S. GUDE ◽  
PRERANA D. NAVTI ◽  
SANAM M. SAWANT

Objective: The objective of the present study was to formulate flurbiprofen (FLB) emulgel, evaluation of the formulations and the selection of an optimized formulation through in vitro drug release and drug content studies. Flurbiprofen is a non-steroidal anti-inflammatory drug (NSAID) requiring frequent administration and its chronic intake can lead to systemic side effects like gastric irritation and GI bleeding. The development of a dermal drug delivery system can overcome these side effects. Methods: The emulgel formulations were produced using different combinations of oil and emulsifying agents. Carbopol 940 was used as a gelling agent. The prepared emulgels were evaluated for general appearance, pH, spreadability, extrudability, drug content, in vitro drug release, average globule size and viscosity. Results: Optimized formulation F7 showed a better in vitro drug release compared to the marketed gel preparation. The stability study for the optimized formulation was carried out at 25 °C/60 % RH for 3 mo and the emulgel was found to be stable concerning the physical appearance, pH and drug content. Conclusion: The study revolved around the formulation of emulgel containing Flurbiprofen for dermal delivery of the drug. Emulgel was formulated with the purpose to enhance the permeation of poorly water-soluble drug FLB. The study concluded that the optimized emulgel containing FLB exhibited better in vitro drug release profile compared to the marketed formulation.


Author(s):  
BHUVANESHWARI R. SHARANNAVAR ◽  
ANAND P. GADAD

Objective: The aim of the present work was to develop and characterize mucoadhesive film of spray dried Lovastatin (LVS) for buccal delivery to enhance bioavailability. Methods: Mucoadhesive films were prepared by solvent casting technique by using different polymers HPMCK4M, HPMC E5LV and chitosan. The successful patches were evaluated for film thickness, weight, content uniformity, surface pH, swelling index, folding endurance, ex-vivo residence time, ex-vivo bioadhesion test, in vitro drug release, ex-vivo drug permeation and stability study. Results: The thickness of all prepared patches ranged from 0.21±0.07 to 1.5±0.39 mm, the weight of the film 89.10±0.6 to 128.57±0.3 mg, drug content 85.47±0.87 to 97.33±0.31%, surface pH 5.6±0.67 to 7.6±0.98, swelling index 23.0±4.1 to 76.5±3.6%, folding endurance 165±1.9 to 350±2.5 respectively. Ex-vivo residence time ranged from 2.2±0.08to 8.2±0.17 h and ex-vivo bioadhesive strength 30±0.64 to 66±0.43 g. The formulations with HPMC E5 shown short period of residence time and shows weak force of adhesion., which might be because of low viscosity of the polymer which resulted into weak adhesion. The percentage drug release and ex-vivo drug permeation was in the following descending order HPMC K4M>HPMC E5LV>chitosan. These results confirm the extension of drug release in case of ionic polymer chitosan. The kinetics data shows that drug release and permeation follows nonfiction diffusion. Accelerated stability data revealed that there is no significant change in drug content, in vitro drug release and ex-vivo permeation. Conclusion: It can be concluded that mucoadhesive buccal patch is a promising dosage form to enhance the drug bioavailability by preventing first-pass metabolism thus providing better therapeutic efficacy.


Author(s):  
RAWOOF MD ◽  
RAJNARAYANA K ◽  
AJITHA M

Objective: The research is designed at formulating and evaluating pH-sensitive rifaximin colon-targeted tablets for targeted action in proximal colon. Method: The colon-targeted tablets are done by granulation of three levels of polymers such as Eudragit L30D, Carbopol 974P, and ethyl cellulose. The evaluation parameters such as swelling studies, drug dissolution, in vitro drug release studies, stability, and the Fourier transform infrared studies carried out for optimized formulations. Results: Physicochemical parameters of all the 27 formulations (RF1-RF27) evaluated and RF21 is chosen for further investigation based on weight variation, hardness, drug content, and swelling index. The in vitro drug release studies indicate that the optimized formulation RF21 released 98.75% drug within 24 h. The stability studies indicate that the formulation is stable. Conclusion: An effective and stable pH-dependent rifaximin colon-targeted tablet formulated for the targeted treatment of bowel syndrome.


Author(s):  
SUJAID THAYYILAKANDY ◽  
GAYATHRI P. S. ◽  
ARJUN K. K. ◽  
GAYATHRI KRISHNAKUMAR ◽  
SREEJA C. NAIR

Objective: To formulate and characterize. Phenobarbital sodium loaded sublingual patch using biodegradable, mucoadhesive, fast-dissolving natural polymer pullulan for immediate management of epileptic seizures. Methods: Phenobarbital sodium loaded sublingual patches were prepared by the solvent casting method and were subjected to various physicochemical evaluation parameters to find the optimized sublingual patch. The in vitro drug release study and kinetic model of the optimized formulation was also carried out. The stability study of the optimized Phenobarbital sodium loaded sublingual patch was also done. Results: From in vitro drug release study, it was found that Phenobarbital sodium loaded sublingual patch (S4) exhibited a maximum drug release of 96.24±1.27% at the end of 60 min compared to other formulations indicating a faster drug release from the formulation with release kinetics as Higuchi diffusion model. In fact, a notable release data was obtained between 0.5 to 8 min by all formulations, specifically S4 formulation (20.84±1.97% and 77.22±2.41% drug release at the end of 0.5 min and 8 min respectively) showed a better percentage release profile in comparison with other formulations. Such a trend is vital to deliver the drug at a faster rate to promote immediate effect for managing the fatal and complicated seizure. Considering the physicochemical property and in vitro drug release data, S4 formulation was regarded as an optimized one. The stability study also confirmed that S4 formulation is stable at refrigeration conditions. Conclusion: The formulated Phenobarbital sodium loaded sublingual patch is an effective drug delivery carrier which enables faster drug release to manage epileptic seizure.


Author(s):  
Misbah Khanum ◽  

The objective of this work was to prepare Fluconazole nanoparticles, and then incorporated into the freshly prepared gel for transdermal delivery, reducing the oral side effects of the drug and forenhancing stability. Fluconazole is commonly used antifungal agents for the treatment of local and systemic fungal infections. In this study Fluconazole nanoparticles was prepared by using Eudragit RL 100 by nanoprecipitation method with different drugs to polymer (1:1, 1:2 and 1:3) and stabilizer (Poloxamer 188) ratios (0.5%, 0.75% and 1%) and evaluated for various parameters. Drug-excipients compatibility was performed by FTIR study. The particle size, polydispersity index, Zeta potential, % Entrapment efficiency and % drug content of all the formulations were found in the range of 16.8 to 48.9nm, 0.229 to 0.558, -11.6 to -26.6 mv, 28.41% to 95.78% and 59% to 97.38%. From SEM studies it was revealed that Fluconazole nanoparticles particles are spherical in shape and without any agglomeration. From the in-vitro drug release study, it was revealed that sustained release of same formulation last up to 12 hours. From the stability study, it was revealed that the F5 formulation was stable at 40°C ± 2°C /75% ± 5%RH and 4°C. The optimised formulation F5 was selected to prepare Fluconazole loaded nanoparticles based topical gels using different concentration of Carbopol 934 and 940 and characterized for pH, spreadability, drug content, viscosity and in-vitro drug diffusion. Among the five formulations, G5 was selected as the best formulation. The pH of all formulations was found near to the skin pH value. The in-vitrodiffusion study of Fluconazole gel (G5) showed 94.75%. The optimized formulation G5 was checked for mechanism and kinetics of drug release. It is found it following Zero order release and non-Fickian mechanism. The selected Gel formulation G5 was found to be stable at 40°C ± 2°C /75% ± 5%RH and 4°C, it is clear that the formulation did not undergo any chemical changes found more stable at room temperature


Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


Sign in / Sign up

Export Citation Format

Share Document