scholarly journals FACILE SYNTHESIS, SPECTRAL STUDIES, DFT CALCULATIONS AND BIOLOGICAL ACTIVITIES OF NOVEL NI (II), CU (II), AND PD (II) COMPLEXES OF THIADIAZOLE ANALOGS

Author(s):  
Priyanka Bhatt ◽  
S. Deepthi ◽  
Ch. Ravi Shankar Kumar ◽  
Anjali Jha

Objective: A facile synthesis of some novel Schiff base derivatives of 2-substituted-5-amino-thiadiazoles along with their Ni (II), Cu (II), and Pd (II) complexes were achieved by sonication and the conventional method. In addition to establish the structure by DFT studies and to explore antimicrobial and anticancer activities of these novel compounds.Methods: The precursor 2-substituted-5-amino-thiadiazoles (T1-T3), target ligands and their metal complexes were synthesized by ultra-sonication and conventional means. The isolated products were thoroughly characterized by physical and spectroscopic techniques including 1H-NMR, [13]C-NMR and IR spectroscopy. All characterized compounds were screened for antimicrobial activities using well diffusion method, and MTT assay was performed for cytotoxicity.Results: All novel compounds were synthesized by a green route i.e. ultra sonication and a noticeable improvement in yield with shorter reaction time than the conventional method were observed. The octahedral geometry was proposed for Ni (II)/Cu (II) complexes whereas square planar for Pd (II) complexes on the basis of the spectral techniques which were supported by DFT analysis by Gaussian03. On the analysis of antimicrobial activities, the compound T7 and T10 showed maximum antibacterial and antifungal activities respectively. However, compounds T25, T37, T31 found to be a potential cytotoxic compound with IC50 value 0.469, 0.865 and 1.131 μM respectively.Conclusion: Analysis of synthetic protocol, it could be concluded that ultra-sonication is the better method to synthesize these potential biological active moiety. On the whole Cu (II) and Ni (II) complexes showed promising activity towards all microorganisms while Pd (II) complex emerged an excellent moiety in carcinoma cell line.

2021 ◽  
Vol 17 ◽  
Author(s):  
Em Canh Pham ◽  
Tuyen Ngoc Truong ◽  
Nguyen Hanh Dong ◽  
Duy Duc Vo ◽  
Tuoi Thi Hong Do

Background: Many compounds containing a five-membered heterocyclic ring display exceptional chemical properties and versatile biological activities. Objective: The objective of the present study was the desire to prepare the 5-substituted 2-amino-1,3,4-oxadiazole and 2-amino-1,3,4-thiadiazole derivatives and evaluate their potential anticancer, antibacterial and antifungal activities. Methods: Twenty-seven derivatives were synthesized by iodine-mediated cyclization of semicarbazones or thiosemicarbazones obtained from condensation of semicarbazide or thiosemicarbazide and aldehydes. The structures were confirmed by 1H-NMR, 13C-NMR and MS spectra. The antibacterial and antifungal activities were evaluated by diffusion method and the anticancer activities were evaluated by MTT assay. Results: Twenty-seven derivatives have been synthesized in moderate to good yields. A number of derivatives exhibited potential antibacterial, antifungal and anticancer activities. Conclusion: Compounds (1b, 1e and 1g) showed antibacterial activity against Streptococcus faecalis, MSSA and MRSA with MIC ranging between 4 to 64 µg/mL. Compound (2g) showed antifungal activity against Candida albicans (8 µg/mL) and Aspergillus niger (64 µg/mL). Compound (1o) exhibited high cytotoxic activity against HepG2 cell line (IC50 value 8.6 µM), which is comparable to the activity of paclitaxel, and is non-toxic on LLC-PK1 normal cell line. The structure activity relationship and molecular docking study of the synthesized compounds are also reported.


2021 ◽  
Vol 2 (01) ◽  
pp. 19-27
Author(s):  
Rhambus Rawat ◽  
Prem Shankar Deo ◽  
Bhushan Shakya

Heterocyclic compounds containing triazole moiety have great importance in the field of medicine, pharmaceuticals, biochemistry, biology, therapeutics, environmental science, and industry. Triazoles and their derivatives have been extensively used in the development of new drugs. Biological activities of Schiff bases are highly investigated, but Mannich bases are on the verge of their development, and they are being synthesized in large number nowadays. In this work, Mannich bases are synthesized by incorporation 1,2,4-triazole moiety through Schiff base using different amines. Mannich bases are found to exhibit highly effective antibacterial and antifungal activities. The formation of synthesized compounds - 1,2,4-triazole-5-thione, Schiff base (4) and Mannich bases (5a and 5b) - are confirmed and characterized by spectroscopic techniques like UV, FTIR 1H-NMR and 13C-NMR. The activity of the synthesized compounds was tested against bacterial and fungal strain.


2020 ◽  
Vol 16 ◽  
Author(s):  
Adinath D. Badar ◽  
Shubham M. Sulakhe ◽  
Mahesh B. Muluk ◽  
Naziya N. M. A. Rehman ◽  
Prashant P. Dixit ◽  
...  

Background: Thiosemicarbazone, 1,2,3-triazole and their derivatives received great pharmaceutical importance due to their prominent biological activities. In the present study, the molecular hybrid thiosemicarbazone-1,2,3-triazoles derivatives were synthesized and screened for their antimicrobial activities. Methods: A series of thiosemicarbazone clubbed with 1,2,3-triazole derivatives were synthesized via click chemistry approach in good yields. The structures of synthesized compounds were assigned by their spectral data. The in vitro antimicrobial activity was performed by the agar well diffusion method. A molecular docking study was performed to identify the possible mode of action of synthesized derivatives. Results: The compounds 5d, 5h, 5i and 5k have exhibited excellent antimicrobial activities against both antibacterial and antifungal pathogens. The active thiosemicarbazone-1,2,3-triazole derivatives have shown excellent binding affinity towards DNA gyrase. Conclusion: The molecular hybrid thiosemicarbazone-1,2,3-triazole derivatives were synthesized. The newly synthesized compounds were evaluated for their antimicrobial activities. Few of the thiosemicarbazone-1,2,3-triazoles derivatives have exhibited good antimicrobial activities. They have been shown excellent binding affinity towards DNA gyrase.


2021 ◽  
Vol 09 ◽  
Author(s):  
Vinit Prakash ◽  
Anjana Kumari ◽  
Harpreet Kaur ◽  
Manoj Kumar ◽  
Sumeet Gupta ◽  
...  

Background: Green synthesized nanoparticles from the solvent extract of various plant parts show better biological activities as compared to parent solvent plant extract. Traditionally rhizomes of Picrorhiza kurroa are used to cure various diseases like diarrhea, fever, jaundice, eye infection, skin problems, asthma, arthritis, cancer, diabetes, gastrointestinal problems. Objectives: Present study describes the synthesis of copper nanoparticles from a hydroethanolic extract of P. kurroa rhizomes (CuNPs-Pk) and their evaluation for antimicrobial activities against gram-negative, gram-positive bacterial, and fungal strains. Methods: The solution of copper sulfate and hydroethanolic extract of rhizomes of P. kurroa was mixed with help of a magnetic stirrer at 60°C temperature for 1 h. The blue color of CuSO4.5H2O changed to brownish-black colored copper nanoparticles within 10 minutes. These nanoparticles were centrifuged at 4000 rpm for 20 min, washed with ethanol, followed by deionized water, dried, and were characterized by Ultra violet–visible (UV-Vis) absorption spectra, Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (TEM). Different concentrations of hydroethanolic extract of Picrorhiza kurroa rhizomes (HEEPk), CuNPs-Pk and copper oxide nanoparticles (bare CuO) ranging from 100-400 ppm had been studied against selected bacterial and fungal strains by using the well plate diffusion method. Ciprofloxin and fluconazole were used as standard and Dimethyl sulfoxide (DMSO) as a control for selected strains. Results: The UV–Vis spectral studies confirmed the surface plasmon resonance of green-synthesized CuNPs-Pk. The particle size was found to be 275-285 nm. FTIR analysis of biosynthesis nanoparticles have been confirm the presence of various functional groups (flavonoids, glycosides, tannins, phenols). SEM and TEM of biosynthesized nanoparticles have predicted their spheric al shape and their size (20-40 nm) and These particles have shown effective antimicrobial activities against selected pathogenic organisms viz. Escherichia coli, Staphylococcus aureus, and Aspergillus niger than that of HEEPk and bare CuO. Conclusions: The CuNPs-Pk show effective antimicrobial activities against bacterial and fungal pathogens as compared to HEEPk and bare CuO.


2007 ◽  
Vol 3 (3) ◽  
pp. 252-263
Author(s):  
Wesam Saber Shehab ◽  
Naglaa Z.H. Eleiwa ◽  
Samar.M. Mouneir

The present study was designed to synthesize  and develop new useful lead compounds (some novel benzazole and benzazine derivatives ) of simple structure , exhibiting optimal in vitro anticancer  and antimicrobial potency. Phenylenediamine derivative 1 was condensed  with  dithiocarboxylic acid derivatives 2 and produced   benzimidazole derivative 4. The benzotriazepines 8 and 10  were formed by the reaction of 1 with dicarbonyl derivatives followed by intermolecular coupling reaction. The synthesis of benzotriazine12, benzotriazole 14,17, benzimidazole16 and benzothiadiazine 19 from compound 1 was also described. The Synthesized Compounds were characterized by Spectral Studies like IR, H1 – NMR and Analysis Spectra .The title compounds were screened for their possible In vitro anticancer and antimicrobial activities. Among the synthesized compounds, some have shown promisingly remarkable activities against  different  cancer cell lines (MCF-7 human breast cancer cells, HepG2 human hepatocarcinoma cells and PC3 human prostate cancer cells)and moderate  to high antibacterial and antifungal activities. The obtained results showed that the most active compounds could be useful as a template for future design, modification and investigation to produce more active analogs.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (06) ◽  
pp. 20-29
Author(s):  
S Shukla ◽  
◽  
S. Gautam ◽  
S Chandra ◽  
A. Kumar

A string of novel coordination compounds of Cr(III) complexes have been derived and characterized from the macrocyclic ligands (L 1 -L 2 ) carried out by condensation reaction between ligands and the subsequent metal salt. The chemical composition of ligand was determined by analytical and spectral techniques i.e. elemental analysis, IR and Mass spectrocopy. Spectral techniques revealed tetradentate [N 4 ] the nature of ligand and its coordination mode to metal ion through nitrogen donor atoms. Metal complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic spectra, ePR studies. The geometry of these complexes was ascertained by molecular modelling study by using Gaussian 09 program. All metal complexes were found to exhibit octahedral geometry around the metal ion. The newly synthesized macrocyclic ligands and metal complexes were subjected for antimicrobial screening to determine the inhibition and control against tested microorganisms, bacteria ( S.lutea , S.aureus, S.albus and E.coli ) and fungi ( A.fulviceps, U . hordei, A. niger and P.catinus ) by using disc diffusion method and agar plate technique, respectively. The experimental results suggest that metal complexes exhibit enhanced inhibition zone than free macrocyclic ligand.


2019 ◽  
Vol 74 (6) ◽  
pp. 473-478 ◽  
Author(s):  
Abd El-Galil E. Amr ◽  
Ahmed M. Naglah ◽  
Nermien M. Sabry ◽  
Alhussein A. Ibrahim ◽  
Elsayed A. Elsayed ◽  
...  

AbstractInterest in the synthesis of heterocyclic organic molecules with peptide moieties has gained attention due to their potential biological activities. The current work aimed at synthesizing new macrocyclic tripeptide imides and evaluating their possible antimicrobial activities. A series of 11 derivatives were prepared from dimethyl 3,5-pyridinevalinyl ester either by NaOH or NH2NH2 treatment, followed by cyclization and further reaction with NaOH or NH2NH2. The majority of synthesized derivatives showed promising antibacterial and antifungal activities in comparison to standard known antibiotics. Compounds 5a and 7b showed the most potential antibacterial against Staphylococcus aureus and antifungal activities against Candida albicans, respectively.


2019 ◽  
Vol 31 (4) ◽  
pp. 780-784
Author(s):  
P. Manimaran ◽  
S. Balasubramaniyan

The metal complexes of Fe(III) and Cu(II) were prepared by using 2,4-dinitrophenyl hydrazine (DNPH) and thiocyanate (SCN) with stirrer refluxed for about 6 h. The prepared Fe(III) and Cu(II) complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility and electronic spectrum, FT-IR spectral studies. The result suggested the octahedral geometry for Fe(III) and Cu(II) complexes. Powder X-ray diffraction indicate the crystalline nature of the metal complexes. The antimicrobial activities of the Fe(III) and Cu(II) complexes were tested with various micro organisms by disc diffusion method. The antimicrobial results indicate that the metal complexes are highly active with compared to the free ligand. The in vitro antioxidant activity of the free ligand and its metal complexes was assayed by radical scavenging activity (DPPH). The result proposed that Fe (III) and Cu(II) complexes exhibited strong antioxidant activity than that of the ligand.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Nagesh Gunvanthrao Yernale ◽  
Mruthyunjayaswamy Bennikallu Hire Mathada

A novel Schiff base ligandN-(4-phenylthiazol-2yl)-2-((2-thiaxo-1,2-dihydroquinolin-3-yl)methylene)hydrazinecarboxamide(L)obtained by the condensation ofN-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-thioxo-1,2-dihydroquinoline-3-carbaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), and Zn(II) complexes have been characterized by elemental analysis and various spectral studies like FT-IR,1H NMR, ESI mass, UV-Visible, ESR, TGA/DTA, and powder X-ray diffraction studies. The Schiff base ligand(L)behaves as tridentate ONS donor and forms the complexes of type [ML(Cl)2] with square pyramidal geometry. The Schiff base ligand(L)and its metal complexes have been screenedin vitrofor their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage activity of ligand and its metal complexes were studied using plasmid DNA pBR322 as a target molecule by gel electrophoresis method. The brine shrimp bioassay was also carried out to study thein vitrocytotoxicity properties for the ligand and its metal complexes againstArtemia salina. The results showed that the biological activities of the ligand were found to be increased on complexation.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Mohamed A. Riswan Ahamed ◽  
Raja S. Azarudeen ◽  
N. Mujafar Kani

Terpolymer of 2-amino-6-nitro-benzothiazole-ethylenediamine-formaldehyde (BEF) has been synthesized and characterized by elemental analysis and various spectral techniques like FTIR, UV-Visible, and1H and13C-NMR. The terpolymer metal complexes were prepared with Cu2+, Ni2+, and Zn2+metal ions using BEF terpolymer as a ligand. The complexes have been characterized by elemental analysis and IR, UV-Visible, ESR,1H-NMR, and13C-NMR spectral studies. Gel permeation chromatography was used to determine the molecular weight of the ligand. The surface features and crystalline behavior of the ligand and its complexes were analyzed by scanning electron microscope and X-ray diffraction methods. Thermogravimetric analysis was used to analyze the thermal stability of the ligand and its metal complexes. Kinetic parameters such as activation energy(Ea)and order of reaction (n) and thermodynamic parameters, namely,ΔS,ΔF,S*, andZ, were calculated using Freeman-Carroll (FC), Sharp-Wentworth (SW), and Phadnis-Deshpande (PD) methods. Thermal degradation model of the terpolymer and its metal complexes was also proposed using PD method. Biological activities of the ligand and its complexes were tested againstShigella sonnei,Escherichia coli,Klebsiellaspecies,Staphylococcus aureus,Bacillus subtilis, andSalmonella typhimuriumbacteria andAspergillus flavus,Aspergillus niger,Penicilliumspecies,Candida albicans,Cryptococcus neoformans,Mucor speciesfungi.


Sign in / Sign up

Export Citation Format

Share Document