Synthesis, Antimicrobial Evaluation and Docking Study of Novel Thiosemicarbazone clubbed with 1,2,3-Triazoles

2020 ◽  
Vol 16 ◽  
Author(s):  
Adinath D. Badar ◽  
Shubham M. Sulakhe ◽  
Mahesh B. Muluk ◽  
Naziya N. M. A. Rehman ◽  
Prashant P. Dixit ◽  
...  

Background: Thiosemicarbazone, 1,2,3-triazole and their derivatives received great pharmaceutical importance due to their prominent biological activities. In the present study, the molecular hybrid thiosemicarbazone-1,2,3-triazoles derivatives were synthesized and screened for their antimicrobial activities. Methods: A series of thiosemicarbazone clubbed with 1,2,3-triazole derivatives were synthesized via click chemistry approach in good yields. The structures of synthesized compounds were assigned by their spectral data. The in vitro antimicrobial activity was performed by the agar well diffusion method. A molecular docking study was performed to identify the possible mode of action of synthesized derivatives. Results: The compounds 5d, 5h, 5i and 5k have exhibited excellent antimicrobial activities against both antibacterial and antifungal pathogens. The active thiosemicarbazone-1,2,3-triazole derivatives have shown excellent binding affinity towards DNA gyrase. Conclusion: The molecular hybrid thiosemicarbazone-1,2,3-triazole derivatives were synthesized. The newly synthesized compounds were evaluated for their antimicrobial activities. Few of the thiosemicarbazone-1,2,3-triazoles derivatives have exhibited good antimicrobial activities. They have been shown excellent binding affinity towards DNA gyrase.

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Ozoh Chinwe Francisca ◽  
Okoro Uchechukwu Chris ◽  
Ugwu David Izuchukwu

A new class of N-(heteroaryl-substituted)-p-toluenesulphonamides has been synthesized exhibiting antibacterial and antifungal properties. The condensation reaction of p-toluenesulphonyl chloride 1 with appropriate substituted amino pyridines 2a–g in acetone furnished N-(heteroaryl-substituted)-p-toluenesulphonamides 3a–g. These derivatives were characterized by IR, 1H-, and 13C-NMR spectroscopy and were screened in vitro against gram-positive bacteria, gram-negative bacteria, and fungi organisms using agar-diffusion method. Results indicated improved biological activities over reference drugs such as Tetracycline (TCN) and Fluconazole (FLU).


2021 ◽  
Vol 17 ◽  
Author(s):  
Em Canh Pham ◽  
Tuyen Ngoc Truong ◽  
Nguyen Hanh Dong ◽  
Duy Duc Vo ◽  
Tuoi Thi Hong Do

Background: Many compounds containing a five-membered heterocyclic ring display exceptional chemical properties and versatile biological activities. Objective: The objective of the present study was the desire to prepare the 5-substituted 2-amino-1,3,4-oxadiazole and 2-amino-1,3,4-thiadiazole derivatives and evaluate their potential anticancer, antibacterial and antifungal activities. Methods: Twenty-seven derivatives were synthesized by iodine-mediated cyclization of semicarbazones or thiosemicarbazones obtained from condensation of semicarbazide or thiosemicarbazide and aldehydes. The structures were confirmed by 1H-NMR, 13C-NMR and MS spectra. The antibacterial and antifungal activities were evaluated by diffusion method and the anticancer activities were evaluated by MTT assay. Results: Twenty-seven derivatives have been synthesized in moderate to good yields. A number of derivatives exhibited potential antibacterial, antifungal and anticancer activities. Conclusion: Compounds (1b, 1e and 1g) showed antibacterial activity against Streptococcus faecalis, MSSA and MRSA with MIC ranging between 4 to 64 µg/mL. Compound (2g) showed antifungal activity against Candida albicans (8 µg/mL) and Aspergillus niger (64 µg/mL). Compound (1o) exhibited high cytotoxic activity against HepG2 cell line (IC50 value 8.6 µM), which is comparable to the activity of paclitaxel, and is non-toxic on LLC-PK1 normal cell line. The structure activity relationship and molecular docking study of the synthesized compounds are also reported.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Mohamed A. Abdelgawad ◽  
Mohammad M. Al-Sanea ◽  
Mohamed A. Zaki ◽  
Enas I. A. Mohamed ◽  
Shabana I. Khan ◽  
...  

Background. Benzoxazole derivatives have different biological activities. In pursuit of designing novel chemical entities with antiprotozoal and antimicrobial activities, benzoxazolyl aniline was utilized as a privileged scaffold of a series of (3-benzoxazole-2-yl) phenylamine derivatives, 3-benzoxazoloyl acetamide, and butyramide derivatives. Methods. These novel analogs were synthesized in straightforward simple chemistry without any quantitative chromatographic separations in reasonable yields. The biological evaluation of all target compounds as potential antimalarial, antileishmanial, antitrypanosomal, and antimicrobial agents was performed by various well-established cell-based methods. Results. Compounds 6d and 5a showed promising biological screening data. The amidation of 3-benzoxazolyl aniline 1 with the chloroacetyl functional group resulted in a good antimalarial activity and showed moderate inhibitory activities against leishmanial and trypanosomal spp. Moreover, chloroacetyl functionalization of benzoxazolyl aniline serves as a good early goal for constructing and synthesizing new antimicrobial and antiprotozoal agents. The molecular docking study rationalizes the relative inhibitory activity of compound 5a as an antimalarial agent with the deregulation of PfPNP activity which has emerged as a major mechanism of these targets.


Author(s):  
AJITH S ◽  
KRISHNA V ◽  
RAVI KUMAR S ◽  
VINAY KUMAR NM

Objective: The present study was designed to evaluate the chemical composition of the essential oil of Buchanania lanzan Spreng extracted from the seeds and to evaluate in vitro antimicrobial antioxidants and molecular docking studies of the major bioactive compounds of essential oil. Methods: The essential oil was obtained by hydrodistillation of the B. lanzan seeds and analyzed by gas chromatography-mass spectrometry (GC-MS). Antibacterial activity was evaluated against Pseudomonas aeruginosa, Salmonella typhi, Vibrio cholerae, Staphylococcus aureus, and Streptococcus pneumoniae clinical isolates by disk diffusion method and resazurin assay determined the minimum inhibitory concentration. The in vitro antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) scavenging assay; the essential oil major bioactive compounds are Androstan-3-ol, Campesterol, and γ-Sitosterol were docked against bacterial protein DNA gyrase. Results: GC-MS analysis exhibited the presence of 19 bioactive compounds. The essential oil showed that significant antibacterial activity was noticed against V. cholerae and S. typhi with the highest zone of inhibition 15.67–1.20 and 13.83–0.33, respectively. Antioxidant activity in DPPH and H2O2 scavenging assays with IC50 values of 134.23 and 191.24, respectively. The molecular docking of Androstan-3-ol and γ-Sitosterol with bacterial DNA gyrase unveiled a good binding affinity of −6.4 kcal/mol and −6.3 kcal/ mol, respectively. Conclusion: It could be concluded that the essential oils potential sources of antibacterial, antioxidant activities, and molecular docking of bioactive components. The results of this study provide partial scientific support for the traditional application of essential oils to cure diarrhea and also major bioactive compounds responsible for important biological activities.


Author(s):  
Paranjeet Kaur ◽  
Gopal L. Khatik

<p class="Default"><strong>Objective: </strong>To identify the novel and simple bioactive antiandrogens, that can overcome to side effects as well as drug resistance.</p><p class="Default"><strong>Methods: </strong>The AutoDock Vina (ADT) 1.5.6 software is used for molecular docking purposes. The molecular structures were drawn in ChemBiodraw ultra and by the help of ChemBiodraw 3D, all structures were energy minimized by MM2 method and converted to pdb extension file which is readable at the ADT interface.</p><p class="Default"><strong>Results: </strong>Total ten compounds from both series were shown better binding affinity than <em>R</em>-bicalutamide including oxadiazole and triazole series. Among these pk42 and pk46 were studied in-depth which showed best binding affinity to the androgen receptor. The <em>cis</em>-isomers were found better than their <em>trans</em>-isomer.</p><p><strong>Conclusion: </strong>Novel 5-styryl-1,2,4-oxadiazole/triazole derivatives were studied through molecular modeling using Autodock Vina. The potent compounds which showed better binding affinity than <em>R</em>-bicalutamide like pk24 and 46 were further analyzed for their interactions. The conformational effect also found significant in binding to the androgen receptor.</p>


2016 ◽  
Vol 24 (21) ◽  
pp. 5315-5325 ◽  
Author(s):  
Mylène Richard ◽  
Alicia Chateau ◽  
Christian Jelsch ◽  
Claude Didierjean ◽  
Xavier Manival ◽  
...  

2020 ◽  
Vol 11 (2) ◽  
pp. 9443-9455

In the current study, bicyclic 1-(7-methyl-3,5-diphenyl-5H-thiazolo(3,2-α)pyrimidine-6-yl)ethanone (4a-l) derivatives have been designed and conveniently synthesized by one-pot three-component method via cyclocondensation of substituted 4-phenylthiazole-2-amine (1a-c), acetylacetone (2) and various aromatic aldehydes (3a-d) in the presence of p-toluene sulfonic acid (PTSA) under acetonitrile solvent medium. The synthesized compounds (4a-l) have been characterized by spectral analysis and subjected to docking study against protein DNA gyrase (PDB Code: 1KZN), and also, the compounds were screened for their in vitro antimicrobial activities. The bioassay of the synthesized compounds envisioned that the compound 4k emerged as a broad-spectrum antibacterial agent, and 4l emerged as a good antifungal agent compared to standard drug.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Samo Lešnik ◽  
Urban Bren

Rosemary (Rosmarinus officinalis L.) represents a medicinal plant known for its various health-promoting properties. Its extracts and essential oils exhibit antioxidative, anti-inflammatory, anticarcinogenic, and antimicrobial activities. The main compounds responsible for these effects are the diterpenes carnosic acid, carnosol, and rosmanol, as well as the phenolic acid ester rosmarinic acid. However, surprisingly little is known about the molecular mechanisms responsible for the pharmacological activities of rosemary and its compounds. To discern these mechanisms, we performed a large-scale inverse molecular docking study to identify their potential protein targets. Listed compounds were separately docked into predicted binding sites of all non-redundant holo proteins from the Protein Data Bank and those with the top scores were further examined. We focused on proteins directly related to human health, including human and mammalian proteins as well as proteins from pathogenic bacteria, viruses, and parasites. The observed interactions of rosemary compounds indeed confirm the beforementioned activities, whereas we also identified their potential for anticoagulant and antiparasitic actions. The obtained results were carefully checked against the existing experimental findings from the scientific literature as well as further validated using both redocking procedures and retrospective metrics.


2019 ◽  
Vol 16 (4) ◽  
pp. 382-391
Author(s):  
Navin B. Patel ◽  
Asif R. Shaikh ◽  
Vatsal M. Patel ◽  
Edgar E. Lara-Ramirez ◽  
Gildardo Rivera

Background: The present work describes antimicrobial, antimycobacterium and anti HIV-1 evaluation of newly synthesized 5-(4-Substituted-benzylidene)-3-[4-(5-methyl-benzothiazol- 2-yl)-phenyl]-2-phenyl-3,5-dihydro-imidazol-4-one (4a-o). The docking studies were performed in order to predict the potential binding affinities. Objective: The major aim of this study is to develop the new class of bezylidine candidate clubbed with benzothiazole with less toxicity and improved potency as antimicrobial, antitubercular and anti HIV-1. Methods: The titled compounds were characterized by spectral studies (IR, 1H NMR, 13C NMR and Mass). In vitro antimycobacterium activity was carried out using Lowenstein-Jensen medium method and antimicrobial activity using the broth microdilution method. The anti HIV-1 reverse transcriptase activity was determined by the colorimetric MTT method and inhibition of virusinduced cytopathogenicity in MT-4 cells. Results: Compound 4i (50 &#181;M) showed better antifungal activity against A. clavatus. Compound 4g (50 &#181;M) with 95% inhibition demonstrated good activity against M. tuberculosis H37Rv. Compound 4k showed CC50 (50 &#181;M) against MT-4 (CD4+ Human T-cells containing an integrated HTLV-1 genome) cells by 50%, while 16 &#181;M concentration value EC50 from the HIV-1 induced cytopathogenicity. Molecular docking study suggested that 4k interacted with the target with binding energy by Vina score (-10.3 Kcal/mol). Conclusion: The preliminary in vitro evaluation results revealed that some of the compounds have promising antimicrobial activities as well as antitubercular potency. Among the various substituents on benzylidene, the nitro group was the most beneficial for improving the anti-HIV-1 activity. Docking result suggested that 4k compound could be acting as a non-competitive or weak inhibitor of Reverse Transcriptase (RT).


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2666 ◽  
Author(s):  
Anca Toiu ◽  
Laurian Vlase ◽  
Dan Cristian Vodnar ◽  
Ana-Maria Gheldiu ◽  
Ilioara Oniga

Solidago species are often used in traditional medicine as anti-inflammatory, diuretic, wound-healing and antimicrobial agents. Still, the bioactive compounds and biological activities of some species have not been studied. The present work aimed to investigate the polyphenolic profile and the biological properties of Solidago graminifolia L. Salisb., a poorly explored medicinal plant. The hydroalcoholic extracts from aerial parts were evaluated for total phenolic content (TPC), total flavonoid content (TFC) and the polyphenolic compounds were investigated by HPLC-MS. The antioxidant potential in vitro was determined using DPPH and FRAP assays. Antibacterial and antifungal effects were evaluated by dilution assays and MIC, MBC and MFC were calculated. The results showed that Solidago graminifolia aerial parts contain an important amount of total phenolics (192.69 mg GAE/g) and flavonoids (151.41 mg RE/g), with chlorogenic acid and quercitrin as major constituents. The hydroalcoholic extracts showed promising antioxidant and antimicrobial potential, with potent antibacterial activity against Staphylococcus aureus and important antifungal effect against Candida albicans and C. parapsilosis. The obtained results indicated that the aerial parts of Solidago graminifolia could be used as novel resource of phytochemicals in herbal preparations with antioxidant and antimicrobial activities.


Sign in / Sign up

Export Citation Format

Share Document