scholarly journals Assessment of Physicochemical parameters and Water Quality Index of Vishwamitri River, Gujarat, India

2017 ◽  
Vol 2 (4) ◽  
pp. 1505-1510 ◽  
Author(s):  
Akshata Magadum ◽  
Tejas Patel ◽  
Deepa Gavali
2021 ◽  
Vol 2130 (1) ◽  
pp. 012028
Author(s):  
M Kulisz ◽  
J Kujawska

Abstract The aim of this paper is to present the potential of using neural network modelling for the prediction of the surface water quality index (WQI). An artificial neural network modelling has been performed using the physicochemical parameters (TDS, chloride, TH, nitrate, and manganese) as an input layer to the model, and the WQI as an output layer. The physicochemical parameters have been taken from five measuring stations of the river Warta in the years 2014-2018 via the Chief Inspectorate of Environmental Protection (GIOŚ). The best results of modelling were obtained for networks with 5 neurons in the hidden layer. A high correlation coefficient (general and within subsets) 0.9792, low level of MSE in each subset (training, test, validation), as well as RMSE at a level of 0.624507639 serve as a confirmation. Additionally, the maximum percentage of an error for WQI value did not exceed 4%, which confirms a high level of conformity of real data in comparison to those obtained during prediction. The aforementioned results clearly present that the ANN models are effective for the prediction of the value of the Surface water quality index and may be regarded as adequate for application in simulation by units monitoring condition of the environment.


2021 ◽  
Author(s):  
Sadia Ismail ◽  
M Farooq Ahmed

Abstract Assessment of groundwater quality is critical, especially in the areas where it is continuously deteriorating due to unplanned industrial growth. This study utilizes GIS-based spatio-temporal and geostatistics tools to characterize the groundwater quality parameters of Lahore region. For this purpose, a large data set of the groundwater quality parameters (for a period of 2005–2016) was obtained from the deep unconfined aquifers. GIS-based water quality index (WQI) and entropy water quality index (EWQI) models were prepared using 15 water quality parameters pH (power of hydrogen), TDS (Total dissolve solids), EC (Electrical conductivity), TH (Total hardness), Ca2+ (Calcium), Mg2+ (Magnesium), Na+ (Sodium), K+ (Potassium), Cl− (Chloride), As (Arsenic), F (Fluoride), Fe (Iron), HCO3− (Bicarbonate), NO3− (Nitrate), and SO42− (Sulfate). The data analysis exhibits that 12% of the groundwater samples fell within the category of poor quality that helped to identify the permanent epicenters of deteriorating water quality index in the study area. As per the entropy theory, Fe, NO3−, K, F, SO42− and As, are the major physicochemical parameters those influence groundwater quality. The spatio-temporal analysis of the large data set revealed an extreme behavior in pH values along the Hudiara drain, and overall high arsenic concentration levels in most of the study area. The geochemical analysis shows that the groundwater chemistry is strongly influence by subsurface soil water interaction. The research highlights the significance of using GIS-based spatio-temporal and geostatistical tools to analyze the large data sets of physicochemical parameters at regional level for the detailed source characterization studies.


2005 ◽  
Vol 110 (1-3) ◽  
pp. 301-322 ◽  
Author(s):  
Patrick Debels ◽  
Ricardo Figueroa ◽  
Roberto Urrutia ◽  
Ricardo Barra ◽  
Xavier Niell

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Nelson Alakeh Mofor ◽  
Estella Buleng Tamungang Njoyim ◽  
Antoine David Mvondo-Zé

Some springs in Awing, North West Cameroon, were assessed in order to ascertain their quality for human consumption. Achialum, Meupi, and Ala’amiti quarters in Awing depend on springs as the major source of drinking water and inhabitants consume it in its natural state without prior assessment and treatment. Water samples were collected from Achialum, Meupi, and Ala’amiti and analysed for organoleptic, physicochemical, and bacteriological parameters using standard methods. Results of organoleptic and physicochemical parameters showed that most of the parameters fell below WHO limits. Water quality index results, based on physicochemical parameters only, showed that Achialum and Ala’amiti springs were of good quality while Meupi spring was of poor quality. Water quality index may not carry enough information about the real quality situation since a single bad parameter value can give misleading information about the water quality. However, the bacteriological aspect revealed the presence of faecal coliforms and pathogenic bacteria in all the springs that justified the high rate of water borne diseases recorded in the area. This poor water quality could be associated to poor hygiene and farming practices. Thus, the population of Awing should implement home water treatment methods such as boiling, filtration, or chlorination before consumption.


2020 ◽  
Vol 271 ◽  
pp. 122576
Author(s):  
Mohammad Rezaie-Balf ◽  
Nasrin Fathollahzadeh Attar ◽  
Ardashir Mohammadzadeh ◽  
Muhammad Ary Murti ◽  
Ali Najah Ahmed ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1305 ◽  
Author(s):  
Catalina Iticescu ◽  
Lucian P. Georgescu ◽  
Gabriel Murariu ◽  
Catalina Topa ◽  
Mihaela Timofti ◽  
...  

The aim of the present paper is to quantify water quality in the Lower Danube Region by using a series of multivariate techniques and the Water Quality Index (WQI). In this paper were measured 18 parameters upstream and downstream the city of Galati along the Danube River, namely: pH, Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), N-NH4+, N-NO2−, N-NO3−, N total, P-PO43−, SO42−, Cl−, Fe-total, Cr-total, Pb2+, Ni2+, Mn2+, Zn2+, As2+, in the interval winter 2013–winter 2016. The samples were either analyzed on the field, or sent for testing to the laboratory. The physicochemical parameters mentioned above were analyzed in accordance with the Romanian and International standards in force. The WQI was calculated according to Weighted Arithmetic Water Quality Index Method. The interdependencies between the selected physicochemical parameters were used for determining potential sources of pollution. Monitoring water quality dynamics in the period mentioned above favoured a series of relevant conclusions about the anthropic influence on water quality. Water quality was assessed by processing the measurements results, by calculating the water quality index (WQI), and by using the principal component analyses (PCA) and the response surface method (RSM) with the aim of correlating the indices for the physico-chemical parameters.


Author(s):  
Adnan Khan ◽  
Aasma Khan ◽  
Bisma Naz ◽  
Rukhsar Rukhsar

Present study is aimed to calculate the water quality index (WQI) of Surjani Town by using weighted arithmetic index method to assess its suitability for drinking purpose. For calculating WQI, 12 parameters (pH, TDS, EC, Hardness, Na, Ca, K, Mg, HCO3, SO4, NO3 and Cl) have been taken into account. Except pH, all physicochemical parameters are exhibiting the maximum prominence in WQI quality rating scale (Qn) which suggests that groundwater is highly polluted. The computed value of water quality index (WQI= 331.62) is also found to be high which is comparable with enormously high concentrations of physicochemical parameters that are violating the WHO admissible limit for drinking purpose. Results revealed that the groundwater is under the influence of anthropogenic activity from nearby Jam Chakro solid waste dumping site. It is concluded that groundwater is highly deteriorated which is immensely inappropriate for drinking purpose according to WQI rating score.


2018 ◽  
Vol 16 (6) ◽  
pp. 1007-1017
Author(s):  
Luz Chacón ◽  
Víctor Arias ◽  
Kenia Barrantes ◽  
Wilson Beita-Sandí ◽  
Liliana Reyes ◽  
...  

Abstract This study used the Canadian Water Quality Index (CWI) to characterize water sampled at three points within the Purires River micro basin, Costa Rica. The first sampling point is located in a high zone with domestic agricultural activities, the second point around the mid-point of the flow of the river, and the third point at the lowest zone with extensive agricultural activities mainly centered on the production of fresh vegetables. Eleven physicochemical parameters (As, Cd, Cr, biochemical oxygen demand (BOD), chemical oxygen demand (COD), NH4+, NO3−, Pb, pH, percent saturation of dissolved oxygen (PSO), and total suspended solids (TSS)) and two microbiological parameters (fecal coliforms and enterococci) were evaluated. We evaluated three different Canadian Water Quality Indexes (CWIs): CWI-1 included only physicochemical parameters, CWI-2 included CWI-1 parameters plus fecal coliforms, and CWI-3 included CWI-2 in addition to enterococci. Statistical analysis of individual parameters showed significant differences between sampling sites. CWI-1 was unable to discriminate between the three sampling points, and characterized the water quality as ‘fair’. CWI-2 was only able to discriminate when the water contained high levels of chemical and microbiological contaminants, while CWI-3 adequately discriminated water quality at each of the sampling points. The evaluation of enterococci together with more traditional water quality parameters enabled better categorization of surface water quality.


2021 ◽  
Vol 19 (3) ◽  
pp. 649-660
Author(s):  
Aiman Ibrahim ◽  
Jojok Sudarso ◽  
I. Imroatushshoolikhah ◽  
Reliana Lumban Toruan ◽  
Lalea Sari

Danau Maninjau yang terletak di Provinsi Sumatera Barat telah ditetapkan sebagai salah satu danau prioritas nasional diantara 15 danau lainnya. Kondisi kualitas air Danau Maninjau salah satunya dipengaruhi oleh kondisi kualitas air dari sungai-sungai yang bermuara di danau tersebut. Penelitian ini bertujuan untuk mengetahui kondisi kualitas air sungai inlet Danau Maninjau dengan menggunakan bioindikator makrozoobentos. Penelitian dilakukan pada bulan Juni dan Agustus 2019 di empat sungai inlet Danau Maninjau yang meliputi Sungai Koto Kaciak, Kurambik, Kularian, dan Ranggeh Bayur. Pengambilan sampel makrozoobentos dilakukan di segmen hulu, tengah, dan hilir dengan menggunakan kick net pada substrat berbatu dan berpasir, serta pengeruk Ekman pada substrat berlumpur. Berdasarkan hasil penelitian, ditemukan makrozoobentos di keempat sungai inlet dengan kisaran 5-25 famili dan 4-10 ordo yang tergolong ke dalam delapan kelas meliputi Insekta, Clitellata, Malacostraca, Bivalvia, Gastropoda, Polychaeta, Hirudinea, dan Turbellaria. Hasil analisis korelasi Spearman antara metrik biologi dengan Water Quality Index (WQI)  menunjukkan bahwa metrik SIGNAL, EPT, dan LQI memiliki korelasi yang sangat kuat dengan nilai r > 0,7 (p<0,01). Metrik SIGNAL dengan korelasi tertinggi (r = 0,752) menunjukkan kondisi perairan sungai inlet Danau Maninjau  yang tercemar ringan hingga berat. Metrik SIGNAL, EPT, dan LQI dapat diaplikasikan untuk melengkapi penilaian parameter fisik kimiawi perairan sungai inlet Danau Maninjau. ABSTRACTLake Maninjau which is located in West Sumatra Province has been designated as one of the national priority lakes among 15 other lakes. Water quality conditions of Lake Maninjau is influenced by the condition of the water quality of the streams that flow into the lake. The present study aimed to determine the condition of the water quality of the inlet stream of Lake Maninjau by using macrozoobenthos as bioindicators. This study was conducted in June and August 2019 in four inlet streams of Lake Maninjau including the Koto Kaciak, Kurambik, Kularian, and Ranggeh Bayur streams. A sampling of macrozoobenthos was carried out in the upstream, middle, and downstream using Surber nets on rocky and sandy substrates, and Ekman Grab on muddy substrates. Based on the results of this study, macrozoobenthos were found in the four inlet streams with a range of 5-25 families and 4-10 orders and classified into eight classes including Insects, Clitellata, Malacostraca, Bivalvia, Gastropods, Polychaeta, Hirudinea, and Turbellaria. The results of the Spearman correlation analysis between biological metrics and the Water Quality Index (WQI) show that the SIGNAL, EPT, and LQI metrics have a very strong correlation with r values > 0.7 (p < 0.01). The SIGNAL metric has the highest correlation (r = 0.752) indicates the inlet streams of Lake Maninjau which are lightly to heavily polluted. Metrics of macrozoobenthos communities such as SIGNAL, EPT, and LQI can be applied to complete the assessment of the physicochemical parameters of inlet streams of Lake Maninjau 


Sign in / Sign up

Export Citation Format

Share Document