Role of transforming growth factor-β in cancer progression

2006 ◽  
Vol 2 (6) ◽  
pp. 743-763 ◽  
Author(s):  
Amy J Galliher ◽  
Jason R Neil ◽  
William P Schiemann
2013 ◽  
Vol 97 (6) ◽  
pp. 680-686 ◽  
Author(s):  
Mark A Prendes ◽  
Alon Harris ◽  
Barbara M Wirostko ◽  
Austin L Gerber ◽  
Brent Siesky

2012 ◽  
Vol 445 (2) ◽  
pp. 285-293 ◽  
Author(s):  
Roxane M. Pommier ◽  
Johann Gout ◽  
David F. Vincent ◽  
Carla E. Cano ◽  
Bastien Kaniewski ◽  
...  

NUPR1 (nuclear protein 1), also called P8 (molecular mass 8 kDa) or COM1 (candidate of metastasis 1), is involved in the stress response and in cancer progression. In the present study, we investigated whether human NUPR1 expression was regulated by TGFβ (transforming growth factor β), a secreted polypeptide largely involved in tumorigenesis. We demonstrate that the expression of NUPR1 was activated by TGFβ at the transcriptional level. We show that this activation is mediated by the SMAD proteins, which are transcription factors specifically involved in the signalling of TGFβ superfamily members. NUPR1 promoter analysis reveals the presence of a functional TGFβ-response element binding the SMAD proteins located in the genomic DNA region corresponding to the 5′-UTR (5′-untranslated region). Altogether, the molecular results of the present study, which demonstrate the existence of a TGFβ/SMAD/NUPR1 activation cascade, open the way to consider and investigate further a new mechanism enabling TGFβ to promote tumorigenesis by inducing stress resistance.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Lai-Ming Yung ◽  
Samuel D Paskin-Flerlage ◽  
Ivana Nikolic ◽  
Scott Pearsall ◽  
Ravindra Kumar ◽  
...  

Introduction: Excessive Transforming Growth Factor-β (TGF-β) signaling has been implicated in pulmonary arterial hypertension (PAH), based on activation of TGF-β effectors and transcriptional targets in affected lungs and the ability of TGF-β type I receptor (ALK5) inhibitors to improve experimental PAH. However, clinical use of ALK5 inhibitors has been limited by cardiovascular toxicity. Hypothesis: We tested whether or not selective blockade of TGF-β and Growth Differentiation Factor (GDF) ligands using a recombinant TGFβ type II receptor extracellular domain Fc fusion protein (TGFBRII-Fc) could impact experimental PAH. Methods: Male SD rats were injected with monocrotaline (MCT) and received vehicle or TGFBRII-Fc (15 mg/kg, twice per week, i.p.). C57BL/6 mice were treated with SU-5416 and hypoxia (SUGEN-HX) and received vehicle or TGFBRII-Fc. RNA-Seq was used to profile transcriptional changes in lungs of MCT rats. Circulating levels of GDF-15 were measured in 241 PAH patients and 41 healthy controls. Human pulmonary artery smooth muscle cells were used to examine signaling in vitro . Results: TGFBRII-Fc is a selective ligand trap, inhibiting the ability of GDF-15, TGF-β1, TGF-β3, but not TGF-β2 to activate SMAD2/3 in vitro . In MCT rats, prophylactic treatment with TGFBRII-Fc normalized expression of TGF-β transcriptional target PAI-1, attenuated PAH and vascular remodeling. Delayed administration of TGFBRII-Fc in rats with established PAH at 2.5 weeks led to improved survival, decreased PAH and remodeling at 5 weeks. Similar findings were observed in SUGEN-HX mice. No valvular abnormalities were found with TGFBRII-Fc treatment. RNA-Seq revealed GDF-15 to be the most highly upregulated TGF-β ligand in the lungs of MCT rats, with only modest increases in TGF-β1 and no change in TGF-β2/3 observed, suggesting a dominant role of GDF-15 in the pathophysiology of this model. Plasma levels of GDF-15 were significantly increased in patients with diverse etiologies of WHO Group I PAH. Conclusions: These findings demonstrate that a selective TGF-β/GDF-15 trap attenuates experimental PAH, remodeling and mortality, without causing valvulopathy. These data highlight the potential role of GDF-15 as a pathogenic molecule and therapeutic target in PAH.


2020 ◽  
Vol 217 (3) ◽  
Author(s):  
Nikolaos G. Frangogiannis

TGF-β is extensively implicated in the pathogenesis of fibrosis. In fibrotic lesions, spatially restricted generation of bioactive TGF-β from latent stores requires the cooperation of proteases, integrins, and specialized extracellular matrix molecules. Although fibroblasts are major targets of TGF-β, some fibrogenic actions may reflect activation of other cell types, including macrophages, epithelial cells, and vascular cells. TGF-β–driven fibrosis is mediated through Smad-dependent or non-Smad pathways and is modulated by coreceptors and by interacting networks. This review discusses the role of TGF-β in fibrosis, highlighting mechanisms of TGF-β activation and signaling, the cellular targets of TGF-β actions, and the challenges of therapeutic translation.


Sign in / Sign up

Export Citation Format

Share Document