Diagnosis of melioidosis: the role of molecular techniques

2021 ◽  
Vol 16 (4) ◽  
pp. 271-288
Author(s):  
Ian Gassiep ◽  
Delaney Burnard ◽  
Michelle J Bauer ◽  
Robert E Norton ◽  
Patrick N Harris

Melioidosis is an emerging infectious disease with an estimated global burden of 4.64 million disability-adjusted life years per year. A major determinant related to poor disease outcomes is delay to diagnosis due to the fact that identification of the causative agent Burkholderia pseudomallei may be challenging. Over the last 25 years, advances in molecular diagnostic techniques have resulted in the potential for rapid and accurate organism detection and identification direct from clinical samples. While these methods are not yet routine in clinical practice, laboratory diagnosis of infectious diseases is transitioning to culture-independent techniques. This review article aims to evaluate molecular methods for melioidosis diagnosis direct from clinical samples and discuss current and future utility and limitations.

2020 ◽  
Author(s):  
Pedram Heidari ◽  
Mitra Salehi ◽  
Abbas Akhavan Sepahi ◽  
Mohamad Reza Razavi

Abstract Background: Brucellosis as a global concern is a zoonotic infectious disease which affects a large number of individuals in developing countries. Microbiological, serological and molecular approaches are useful for detection and identification of Brucella spp. A confirmed diagnosis requires isolation of Brucella from clinical specimens that is the most sensitive method in the acute and sub-acute phases of the diseases. On the other hand, molecular diagnostic techniques are more sensitive and more specific than serological techniques, especially in chronic localized cases because of antigenic cross-reactions or antibody titers lower than 160. Until now different Brucella specific sequences like BCSP 31, IS711 and 16SrRNA have been amplified for detection of Brucella spp. In this study, the sensitivity and specificity of The B4-B5 primers and IS711 designed primers were evaluated for detection of of Brucella Spp. in the clinical samples. Results : Amplification of extracted DNA from serum of 49 suspected patients were tested with two sets of specific primers. The BCSP31 amplicon was 223 bp and all the 49 (100%) serum specimens were positive by B4-B5 primers, including 4 cases with negative 2ME test result. The designed IS711 primers amplified the IS711 product with 448 bp length and 46 of 49 (93.87%) cases were positive. The sensitivity of the applied primers (B4-B5 and IS711) was evaluated by using the serial dilutions of extracted purified DNA molecules of B. melitensis and B. abortus . The B4-B5 primers can detect the least number of both B. melitensis and B. abortus , 0.1 CFU/reaction. However, the designed IS711 set is able to detect 10 CFU/reaction. The B4-B5 primer and IS711 designed primer recognized 100% (49/49) and 94% (46/49) of the cases, respectively. Conclusion: This study indicated that the sensitivity of B4-B5 primer is 100%, while the sensitivity of the designed primer of IS711 is 94%. The laboratory experiment revealed that designed IS711 set is 1×10 2 times more sensitive than sensitivity of the other experiments for detection of IS711 target sequence in the specimens.


2014 ◽  
Vol 5 (6) ◽  
pp. 449-456 ◽  
Author(s):  
Damiano Pizzol ◽  
Alessandro Bertoldo ◽  
Carlo Foresta

AbstractMale infertility is a problem that faces increasing interest, and the continuous development of assisted reproduction techniques solicits attempts to identify a precise diagnosis, in particular for idiopathic infertile couples and those undergoing assisted reproductive technique cycles. To date, diagnosis of male infertility is commonly based on standard semen analysis, but in many cases, this is not enough to detect any sperm abnormality. A better understanding of biomolecular issues and mechanism of damaged spermatogenesis and the refinement of the molecular techniques for sperm evaluation and selection are important advances that can lead to the optimization of diagnostic and therapeutic management of male and couple infertility. Faced with a growing number of new proposed techniques and diagnostic tests, it is fundamental to know which tests are already routinely used in the clinical practice and those that are likely to be used in the near future. This review focuses on the main molecular diagnostic techniques for male infertility and on newly developed methods that will probably be part of routine sperm analysis in the near future.


2016 ◽  
Author(s):  
S. Ambrós ◽  
F. Martínez ◽  
P. Ivars ◽  
C. Hernández ◽  
F. de la Iglesia ◽  
...  

AbstractTomato is known to be a natural and experimental reservoir host for many plant viruses. In the last few years a new tobamovirus species, Tomato mottle mosaic virus (ToMMV), has been described infecting tomato and pepper plants in several countries worldwide. Upon observation of symptoms in tomato plants growing in a greenhouse in Valencia, Spain, we aimed to ascertain the etiology of the disease. Using standard molecular techniques, we first detected a positive sense single-stranded RNA virus as the probable causal agent. Next, we amplified, cloned and sequenced a ~3 kb fragment of its RNA genome which allowed us to identify the virus as a new ToMMV isolate. Through extensive assays on distinct plant species, we validated Koch’s postulates and investigated the host range of the ToMMV isolate. Several plant species were locally and/or systemically infected by the virus, some of which had not been previously reported as ToMMV hosts despite they are commonly used in research greenhouses. Finally, two reliable molecular diagnostic techniques were developed and used to assess the presence of ToMMV in different plants species. We discuss the possibility that, given the high sequence homology between ToMMV and Tomato mosaic virus, the former may have been mistakenly diagnosed as the latter by serological methods.


2020 ◽  
Vol 10 (1) ◽  
pp. 69-71
Author(s):  
M.M. Lawan ◽  
And M.I. Shago

The emergence of resistance to all antimalarial drugs in clinical use is now making it necessary to discover the markers responsible for the resistance. The principal aim of this research is the use of molecular diagnostic techniques to Determine the epidemiology of malaria parasites. Thirty blood samples were analyzed by microscopy and molecular techniques to monitor the relative efficiency in malaria diagnosis. Molecular analysis revealed 28 out of 30 samples as positive for malaria while Microscopic analysis revealed 27out of 30 samples as positive malaria parasite. The molecular analysis was particularly useful to unveil parasites presence in infections not detectable by blood smear analysis. Keywords: Molecular Diagnostic Techniques, Epidemiology, Malaria Parasites


2021 ◽  
Author(s):  
Rhoda Lims Diyie ◽  
Dennis W. Aheto ◽  
Mike Y. Osei-Atweneboana ◽  
Emmanuel Armah ◽  
Kobina Yankson

Abstract The modern and rapid avenue for detecting pathogens provided by molecular genetic techniques including polymerase chain reaction (PCR) was explored in the present study to identify prevalent disease pathogens, from six aquaculture farms and in two commonly cultured fish in Ghana. The specific detection was carried out directly on clinical samples of naturally infected fish (O. niloticus and C. gariepinus) based on syber-mix reaction protocol in traditional PCR. Molecular diagnostic techniques allowed the detection of six most common and important bacteria pathogens in aquaculture farms in Ghana. Also, three of the pathogens (Streptococcus agalactiae, Streptococcus iniae and Staphylococcus aureus) were simultaneously isolated in a multiplex reaction. The results indicated 90% - 100% sensitivity and specificity for each of the six bacterial pathogens tested. Streptococcosis and motile aeromonad septicemia were found to be highly prevalent in most aquaculture farms in Ghana with severity in infections traced to the 85.7% and 14.9% co-infections with all six target pathogens in catfish and tilapia respectively. Prevalence rate of infections significantly correlated with variations in salinity, conductivity and dissolved oxygen concentrations in the thermal stressed condition of the culture water.


2020 ◽  
Vol 6 (4) ◽  
pp. 310
Author(s):  
Monise Fazolin Petrucelli ◽  
Mariana Heinzen de Abreu ◽  
Bruna Aline Michelotto Cantelli ◽  
Gabriela Gonzalez Segura ◽  
Felipe Garcia Nishimura ◽  
...  

Dermatophytoses affect about 25% of the world population, and the filamentous fungus Trichophyton rubrum is the main causative agent of this group of diseases. Dermatomycoses are caused by pathogenic fungi that generally trigger superficial infections and that feed on keratinized substrates such as skin, hair, and nails. However, there are an increasing number of reports describing dermatophytes that invade deep layers such as the dermis and hypodermis and that can cause deep infections in diabetic and immunocompromised patients, as well as in individuals with immunodeficiency. Despite the high incidence and importance of dermatophytes in clinical mycology, the diagnosis of this type of infection is not always accurate. The conventional methods most commonly used for mycological diagnosis are based on the identification of microbiological and biochemical features. However, in view of the limitations of these conventional methods, molecular diagnostic techniques are increasingly being used because of their higher sensitivity, specificity and rapidity and have become more accessible. The most widely used molecular techniques are conventional PCR, quantitative PCR, multiplex PCR, nested, PCR, PCR-RFLP, and PCR-ELISA. Another promising technique for the identification of microorganisms is the analysis of protein profiles by MALDI-TOF MS. Molecular techniques are promising but it is necessary to improve the quality and availability of the information in genomic and proteomic databases in order to streamline the use of bioinformatics in the identification of dermatophytes of clinical interest.


2005 ◽  
Vol 16 (2) ◽  
pp. 92-98 ◽  
Author(s):  
Ameeta Singh ◽  
Jutta Preiksaitis ◽  
Barbara Romanowski

Herpes simplex virus (HSV) types 1 and 2 cause genital herpes infections and are the most common cause of genital ulcer disease in industrialized nations. Although these infections are very common, the majority of them remain underdiagnosed because they are asymptomatic or unrecognized. A clinical diagnosis of genital herpes should always be confirmed by laboratory testing; this can be accomplished through the use of direct tests for viral isolation, the detection of antigen or, more recently, the detection of HSV DNA using molecular diagnostic techniques. Testing for serotypes is recommended because of the different prognostic and counselling implications. Type-specific HSV serology is becoming more readily available and will enhance the ability to make the diagnosis and guide clinical management in select patients.


Author(s):  
Tanushri Mukherjee ◽  
Soma Mukherjee ◽  
Rajat Dutta

<p>Pediatric tumors are challenging in the context of best diagnosis, treatment, and prognosis. For tumors which have a genetic association or a cancer predisposition syndrome, the prognosis depends on accurate diagnosis. The application of molecular genetics to pediatric tumors has resulted in better diagnostic and prognostic factors for patient management. Molecular diagnostic techniques, such as reverse transcription polymerase chain reaction and fluorescence in situ hybridization (FISH), have become important tests for childhood tumors. Targeted therapies are aimed at specific translocations which are detected by FISH. Molecular techniques help in monitoring of minimal residual disease in childhood tumors.</p>


1997 ◽  
Vol 43 (11) ◽  
pp. 2021-2038 ◽  
Author(s):  
Yi-Wei Tang ◽  
Gary W Procop ◽  
David H Persing

Abstract Over the past several years, the development and application of molecular diagnostic techniques has initiated a revolution in the diagnosis and monitoring of infectious diseases. Microbial phenotypic characteristics, such as protein, bacteriophage, and chromatographic profiles, as well as biotyping and susceptibility testing, are used in most routine laboratories for identification and differentiation. Nucleic acid techniques, such as plasmid profiling, various methods for generating restriction fragment length polymorphisms, and the polymerase chain reaction (PCR), are making increasing inroads into clinical laboratories. PCR-based systems to detect the etiologic agents of disease directly from clinical samples, without the need for culture, have been useful in rapid detection of unculturable or fastidious microorganisms. Additionally, sequence analysis of amplified microbial DNA allows for identification and better characterization of the pathogen. Subspecies variation, identified by various techniques, has been shown to be important in the prognosis of certain diseases. Other important advances include the determination of viral load and the direct detection of genes or gene mutations responsible for drug resistance. Increased use of automation and user-friendly software makes these technologies more widely available. In all, the detection of infectious agents at the nucleic acid level represents a true synthesis of clinical chemistry and clinical microbiology techniques.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Daniel Hussien Reta ◽  
Tesfaye Sisay Tessema ◽  
Addis Simachew Ashenef ◽  
Adey Feleke Desta ◽  
Wajana Lako Labisso ◽  
...  

Viral infections are causing serious problems in human population worldwide. The recent outbreak of coronavirus disease 2019 caused by SARS-CoV-2 is a perfect example how viral infection could pose a great threat to global public health and economic sectors. Therefore, the first step in combating viral pathogens is to get a timely and accurate diagnosis. Early and accurate detection of the viral presence in patient sample is crucial for appropriate treatment, control, and prevention of epidemics. Here, we summarize some of the molecular and immunological diagnostic approaches available for the detection of viral infections of humans. Molecular diagnostic techniques provide rapid viral detection in patient sample. They are also relatively inexpensive and highly sensitive and specific diagnostic methods. Immunological-based techniques have been extensively utilized for the detection and epidemiological studies of human viral infections. They can detect antiviral antibodies or viral antigens in clinical samples. There are several commercially available molecular and immunological diagnostic kits that facilitate the use of these methods in the majority of clinical laboratories worldwide. In developing countries including Ethiopia where most of viral infections are endemic, exposure to improved or new methods is highly limited as these methods are very costly to use and also require technical skills. Since researchers and clinicians in all corners of the globe are working hard, it is hoped that in the near future, they will develop good quality tests that can be accessible in low-income countries.


Sign in / Sign up

Export Citation Format

Share Document