Molecular detection of extensively drug-resistant Salmonella Typhi and carbapenem-resistant pathogens in pediatric septicemia patients in Pakistan – a public health concern

2021 ◽  
Author(s):  
Muhammad Usman Qamar ◽  
Atifa Ambreen ◽  
Alia Batool ◽  
Muhammad Hidayat Rasool ◽  
Muhammad Shafique ◽  
...  

Aim: To determine the prevalence of multidrug (MDR) and extensively drug-resistant (XDR) pathogens from pediatric blood samples Methods: In total, 4543 children's blood samples were processed in the BacT/ALERT system. Confirmation of the isolates and MIC was determined in VITEK® 2 system. Molecular identification of blaIMP, blaVIM and blaOXA-48 was done by PCR. Results: Of 4543 blood cultures, 458 (10%) were positive for bacterial growth and Salmonella Typhi (415; 90%) remained the primary pathogens. Antibiogram revealed 208 (50.1%) and 137 (33%) were MDR and XDR S. Typhi, respectively. Klebsiella pneumoniae displayed 46% resistance to imipenem. One hundred twelve (81.7%) XDR Typhi were positive for blaCTXM, whereas 14 (66.6%) blaVIM were found in carbapenem-resistant bacteria. Conclusion: A high prevalence of MDR and XDR pathogens was found in peads blood culture.

2021 ◽  
Author(s):  
Anke Breine ◽  
Megane Van Gysel ◽  
Mathias Elsocht ◽  
Clemence Whiteway ◽  
Chantal Philippe ◽  
...  

Synopsis Objectives: The spread of antibiotic resistant bacteria is an important threat for human healthcare. Acinetobacter baumannii bacteria impose one of the major issues, as multidrug- to pandrug-resistant strains have been found, rendering some infections untreatable. In addition, A. baumannii is a champion in surviving in harsh environments, being capable of resisting to disinfectants and to persist prolonged periods of desiccation. Due to the high degree of variability found in A. baumannii isolates, the search for new antibacterials is challenging. Here, we screened a compound library to identify compounds active against recent isolates of A. baumannii bacteria. Methods: A repurposing drug screen was undertaken to identify A. baumannii growth inhibitors. One hit was further characterized by determining its IC50 and testing its activity on 43 recent clinical A. baumannii isolates, amongst which 40 are extensively drug- and carbapenem-resistant strains. Results: The repurposing screen led to the identification of a harmine-derived compound, called HDC1, which proved to have bactericidal activity on the multidrug-resistant AB5075-VUB reference strain with an IC50 of 48.23 [mu]M. In addition, HDC1 impairs growth of all 43 recent clinical A. baumannii isolates. Conclusions: We identified a compound with inhibitory activity on all tested, extensively drug-resistant clinical A. baumannii isolates.


Author(s):  
Elham Abbasi ◽  
Hossein Goudarzi ◽  
Ali Hashemi ◽  
Alireza Salimi Chirani ◽  
Abdollah Ardebili ◽  
...  

AbstractA major challenge in the treatment of infections has been the rise of extensively drug resistance (XDR) and multidrug resistance (MDR) in Acinetobacter baumannii. The goals of this study were to determine the pattern of antimicrobial susceptibility, blaOXA and carO genes among burn-isolated A. baumannii strains. In this study, 100 A. baumannii strains were isolated from burn patients and their susceptibilities to different antibiotics were determined using disc diffusion testing and broth microdilution. Presence of carO gene and OXA-type carbapenemase genes was tested by PCR and sequencing. SDS-PAGE was done to survey CarO porin and the expression level of carO gene was evaluated by Real-Time PCR. A high rate of resistance to meropenem (98%), imipenem (98%) and doripenem (98%) was detected. All tested A. baumannii strains were susceptible to colistin. The results indicated that 84.9% were XDR and 97.9% of strains were MDR. In addition, all strains bore blaOXA-51 like and blaOXA-23 like and carO genes. Nonetheless, blaOXA-58 like and blaOXA-24 like genes were harbored by 0 percent and 76 percent of strains, respectively. The relative expression levels of the carO gene ranged from 0.06 to 35.01 fold lower than that of carbapenem-susceptible A. baumannii ATCC19606 and SDS – PAGE analysis of the outer membrane protein showed that all 100 isolates produced CarO. The results of current study revealed prevalence of blaOXA genes and changes in carO gene expression in carbapenem resistant A.baumannii.


2021 ◽  
Vol 21 ◽  
Author(s):  
Priyanka Ashwath ◽  
Akhila Dharnappa Sannejal

: The increasing resistance of the disease-causing pathogens to antimicrobial drugs is a public health concern and a socio-economic burden. The emergence of multi-drug resistant strains has made it harder to treat and combat infectious diseases with available conventional antibiotics. There are currently few effective therapeutic regimens for the successful prevention of infections caused by drug-resistant microbes. The various alternative strategies used in the recent past to decrease and limit antibiotic resistance in pathogens include bacteriophages, vaccines, anti-biofilm peptides, and antimicrobial peptides. However, in this review, we focus on the novel and robust molecular approach of antisense RNA (asRNA) technology and the clustered regulatory interspaced short palindromic repeat (CRISPR)-based antibiotic therapy, which can be exploited to selectively eradicate the drug-resistant bacterial strain in a sequence-specific fashion establishing opportunities in the treatment of multi-drug resistant related infections.


Sign in / Sign up

Export Citation Format

Share Document