scholarly journals Reappraisal of trifluperidol against Nsp3 as a potential therapeutic for novel COVID-19: a molecular docking and dynamics study

2021 ◽  
Author(s):  
Ajita Pandey ◽  
Mohit Sharma

Novel COVID-19 is a highly infectious disease that is caused by the recently discovered SARS-CoV-2. It is a fast-spreading disease that urgently requires therapeutics. The current study employed computational regression methods to target the ADP-ribose phosphatase (ADRP) domain of Nsp3 using FDA-approved drugs. Identified leads were further investigated using molecular dynamics simulation (MDS). The screening and MDS results suggest that trifluperidol could be a novel inhibitor of the ADRP domain of Nsp3. Trifluperidol could, therefore, be used to help control the spread of COVID-19, either alone or in combination with antiviral agents.

Author(s):  
Hasanain Abdulhameed Odhar ◽  
Salam Waheed Ahjel ◽  
Zanan Abdulhameed Odhar

Zika virus is a mosquito borne pathogen with a single strand RNA genome. Human infection with this virus is usually asymptomatic, however outbreaks reported in both Pacific region and Latin America have been associated with increase in frequency of microcephaly in newborns and fetuses of infected mothers. Also, the incidence of Guillain-Barré syndrome had also increased among adults with Zika virus infection. Currently, neither vaccine nor antiviral drug has been developed against Zika virus. Structure based virtual screening can be employed, through drug repurposing strategy, to accelerate the identification of potential anti-Zika virus candidates. As such, virtual screening of approved drugs against Zika virus NS2B/NS3 protease can help to recognize new hits capable of hindering viral ability to replicate and evade immune system of the host. In this computational study, we have screened 1615 FDA approved drugs against NS2B/NS3 protease enzyme of Zika virus by using both molecular docking and dynamics simulation. Our virtual screening results indicate that the anti-muscarinic agent Darifenacin and the anti-diarrheal agent Loperamide may have a promising capacity to inhibit Zika virus NS2B/NS3 protease. According to molecular docking and dynamics simulation, these two approved drugs have good binding capacity to NS2B/NS3 as reported by docking energy of binding and MM-PBSA binding energy. In addition, both Darifenacin and Loperamide were able to maintain close proximity to protease crystal throughout simulation period. However, invitro evaluation of these two drugs against Zika virus NS2B/NS3 protease is required to confirm these computational results.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Vicky Mody ◽  
Joanna Ho ◽  
Savannah Wills ◽  
Ahmed Mawri ◽  
Latasha Lawson ◽  
...  

AbstractEmerging outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is a major threat to public health. The morbidity is increasing due to lack of SARS-CoV-2 specific drugs. Herein, we have identified potential drugs that target the 3-chymotrypsin like protease (3CLpro), the main protease that is pivotal for the replication of SARS-CoV-2. Computational molecular modeling was used to screen 3987 FDA approved drugs, and 47 drugs were selected to study their inhibitory effects on SARS-CoV-2 specific 3CLpro enzyme in vitro. Our results indicate that boceprevir, ombitasvir, paritaprevir, tipranavir, ivermectin, and micafungin exhibited inhibitory effect towards 3CLpro enzymatic activity. The 100 ns molecular dynamics simulation studies showed that ivermectin may require homodimeric form of 3CLpro enzyme for its inhibitory activity. In summary, these molecules could be useful to develop highly specific therapeutically viable drugs to inhibit the SARS-CoV-2 replication either alone or in combination with drugs specific for other SARS-CoV-2 viral targets.


2021 ◽  
Vol 20 (04) ◽  
pp. 377-390
Author(s):  
Zahra Hesari ◽  
Samaneh Zolghadri ◽  
Sajad Moradi ◽  
Mohsen Shahlaei ◽  
Elham Tazikeh-Lemeski

Non-Structural Protein 16 (NSP-16) is one of the most suitable targets for discovery of drugs for corona viruses including SARS-CoV-2. In this study, drug discovery of SARS-CoV-2 nsp-16 has been accomplished by pharmacophore-based virtual screening among some analogs (FDA approved drugs) and marine natural plants (MNP). The comparison of the binding energies and the inhibition constants was determined using molecular docking method. Three compounds including two FDA approved (Ibrutinib, Idelalisib) and one MNP (Kumusine) were selected for further investigation using the molecular dynamics simulations. The results indicated that Ibrutinib and Idelalisib are oral medications while Kumusine, with proper hydrophilic and solubility properties, is an appropriate candidate for nsp-16 inhibitor and can be effective to control COVID-19 disease.


2019 ◽  
Vol 97 (8) ◽  
pp. 869-874
Author(s):  
Xue-Qing Chen ◽  
Lei Tong

In this paper, mesoscopic lattice–Boltzmann method (LBM) and microscopic molecular dynamics simulation method were used to simulate droplet dynamic wetting under microgravity. In terms of LBM, the wetting process of a droplet on a solid wall surface was simulated by introducing the fluid–fluid and solid–fluid interactions. In terms of molecular dynamics simulation, the spreading process of water on gold surface was simulated. Calculation results showed that two kinds of calculation methods were based on the microscopic molecular theory or mesoscopic kinetics theory, and such models could effectively overcome the contact line paradox issue, which results from the macro-continuum assumption and non-slip boundary condition assumption. The spreading exhibits two-stage behavior: fast spreading and slow spreading stages. For the two simulation methods, the ratio of fast spreading stage duration to slow spreading duration, spreading capacity (equilibrium contact radius/initial radius), and the spreading exponent of the rapid stage were very close. However, the predictive spreading index of the slow spreading stage was different, owing to the different spreading mechanisms between meso- and nanoscales.


Sign in / Sign up

Export Citation Format

Share Document