Recent advances in polymer shell-oily core nanocapsules for drug delivery applications

Nanomedicine ◽  
2021 ◽  
Author(s):  
Ahmed S AbdElhamid ◽  
Dina G Zayed ◽  
Lamia Heikal ◽  
Sherine N Khattab ◽  
Omar Y Mady ◽  
...  

Polymeric nanocapsules are vesicular drug delivery systems composed of an inner oily reservoir surrounded by polymeric membranes. Nanocapsules have various advantages over other nanovesicular systems such as providing controlled drug release properties. We discuss the recent advances in polymeric shell-oily core nanocapsules, illustrating the different types of polymers used and their implementation. Nanocapsules can be utilized for many purposes, especially encapsulation of highly lipophilic drugs. They have been shown to have variable applications, especially in cancer therapy, due to the ability of the polymeric shell to direct the loaded drugs to their target sites, as well as their high internalization efficacy. Those productive applications guaranteed their high potential as drug delivery systems. However, their clinical development is still in an early stage.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 926
Author(s):  
Koyo Nishida

Here, I report recent advances in lipid-based drug delivery systems, with a focus on their production, controlled drug release, targeting, and co-delivery [...]


2013 ◽  
Vol 40 (10) ◽  
pp. 1014
Author(s):  
Xiao-Hong HAO ◽  
Cui-Miao ZHANG ◽  
Xiao-Long LIU ◽  
Xing-Jie LIANG ◽  
Guang JIA ◽  
...  

2020 ◽  
Vol 20 (11) ◽  
pp. 1001-1016
Author(s):  
Sandra Ramírez-Rave ◽  
María Josefa Bernad-Bernad ◽  
Jesús Gracia-Mora ◽  
Anatoly K. Yatsimirsky

Hybrid materials based on Mesoporous Silica Nanoparticles (MSN) have attracted plentiful attention due to the versatility of their chemistry, and the field of Drug Delivery Systems (DDS) is not an exception. MSN present desirable biocompatibility, high surface area values, and a well-studied surface reactivity for tailoring a vast diversity of chemical moieties. Particularly important for DDS applications is the use of external stimuli for drug release. In this context, light is an exceptional alternative due to its high degree of spatiotemporal precision and non-invasive character, and a large number of promising DDS based on photoswitchable properties of azobenzenes have been recently reported. This review covers the recent advances in design of DDS using light as an external stimulus mostly based on literature published within last years with an emphasis on usually overlooked underlying chemistry, photophysical properties, and supramolecular complexation of azobenzenes.


2018 ◽  
Vol 14 (5) ◽  
pp. 432-439 ◽  
Author(s):  
Juliana M. Juarez ◽  
Jorgelina Cussa ◽  
Marcos B. Gomez Costa ◽  
Oscar A. Anunziata

Background: Controlled drug delivery systems can maintain the concentration of drugs in the exact sites of the body within the optimum range and below the toxicity threshold, improving therapeutic efficacy and reducing toxicity. Mesostructured Cellular Foam (MCF) material is a new promising host for drug delivery systems due to high biocompatibility, in vivo biodegradability and low toxicity. Methods: Ketorolac-Tromethamine/MCF composite was synthesized. The material synthesis and loading of ketorolac-tromethamine into MCF pores were successful as shown by XRD, FTIR, TGA, TEM and textural analyses. Results: We obtained promising results for controlled drug release using the novel MCF material. The application of these materials in KETO release is innovative, achieving an initial high release rate and then maintaining a constant rate at high times. This allows keeping drug concentration within the range of therapeutic efficacy, being highly applicable for the treatment of diseases that need a rapid response. The release of KETO/MCF was compared with other containers of KETO (KETO/SBA-15) and commercial tablets. Conclusion: The best model to fit experimental data was Ritger-Peppas equation. Other models used in this work could not properly explain the controlled drug release of this material. The predominant release of KETO from MCF was non-Fickian diffusion.


2011 ◽  
Vol 1 (2) ◽  
pp. 135-149
Author(s):  
Jose Maria Bermudez ◽  
Daniela Quinteros ◽  
Ricardo Grau ◽  
Daniel Allemandi ◽  
Santiago Palma

Sign in / Sign up

Export Citation Format

Share Document