Adipose tissue versus stem cell-derived small extracellular vesicles to enhance the healing of acute burns

2021 ◽  
Author(s):  
Jalil Rohani Ivari ◽  
Elahe Mahdipour

Aim: Proper healing of extensive burns remains a healthcare challenge. In the present study, we proposed a distinct therapeutic application of adipose tissue and small extracellular vesicles isolated from human menstrual blood-derived mesenchymal stem cells (MenSC) small extracellular vesicles (sEVs) to enhance the repair of third-degree burn injury. Materials & methods: Mouse model of third-degree burn was used. Adipose tissue in the form of Nano-fat (NF) and MenSC-sEVs was injected subcutaneously at the site of injuries. Results: NF and sEVs were capable of enhancing wound closure and increasing neoangiogenesis. NF was also effective in accelerating the formation of granulation tissue and boosting the thickness of the new epithelial layer. Conclusion: This study demonstrates the effectiveness of NF and MenSC-sEVs as promising therapeutic approaches to facilitate the repair of skin burns.

2021 ◽  
Vol 22 (3) ◽  
pp. 1375
Author(s):  
María Carmen Carceller ◽  
María Isabel Guillén ◽  
María Luisa Gil ◽  
María José Alcaraz

Adipose tissue represents an abundant source of mesenchymal stem cells (MSC) for therapeutic purposes. Previous studies have demonstrated the anti-inflammatory potential of adipose tissue-derived MSC (ASC). Extracellular vesicles (EV) present in the conditioned medium (CM) have been shown to mediate the cytoprotective effects of human ASC secretome. Nevertheless, the role of EV in the anti-inflammatory effects of mouse-derived ASC is not known. The current study has investigated the influence of mouse-derived ASC CM and its fractions on the response of mouse-derived peritoneal macrophages against lipopolysaccharide (LPS). CM and its soluble fraction reduced the release of pro-inflammatory cytokines, adenosine triphosphate and nitric oxide in stimulated cells. They also enhanced the migration of neutrophils or monocytes, in the absence or presence of LPS, respectively, which is likely related to the presence of chemokines, and reduced the phagocytic response. The anti-inflammatory effect of CM may be dependent on the regulation of toll-like receptor 4 expression and nuclear factor-κB activation. Our results demonstrate the anti-inflammatory effects of mouse-derived ASC secretome in mouse-derived peritoneal macrophages stimulated with LPS and show that they are not mediated by EV.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0174303 ◽  
Author(s):  
Alfonso Eirin ◽  
Xiang-Yang Zhu ◽  
Amrutesh S. Puranik ◽  
John R. Woollard ◽  
Hui Tang ◽  
...  

2021 ◽  
Vol 10 (12) ◽  
Author(s):  
Kyoung Soo Lee ◽  
Jeongmi Lee ◽  
Hark Kyun Kim ◽  
Seung Ho Yeom ◽  
Chang Hee Woo ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Zixin Zhou ◽  
Yan Tao ◽  
Hui Zhao ◽  
Qun Wang

Adipose tissue is comprised of heterogenous cell populations that regulate both energy metabolism and immune reactions. Macrophages play critical roles in regulating immunometabolic homeostasis or disorders through cooperation with adipocytes, adipose tissue-derived stem cells (ADSCs) or other cells in adipose tissue. Extracellular vesicles (EVs) are recently recognized as efficient messengers for intercellular communication. Emerging evidences have demonstrated that adipose EVs are actively involved in the mutual interactions of macrophages, adipocytes and ADSCs, which produce considerable influences on immunometabolism under healthy or obese conditions. Here, we will elaborate the production and the characteristics of adipose EVs that are related to macrophages under different metabolic demands or stresses, whilst discuss the roles of these EVs in regulating local or systemic immunometabolic homeostasis or disorders in the context of adipocyte-macrophage dialogue and ADSC-macrophage interaction. Particularly, we provide a profile of dynamic adipose microenvironments based on macrophages. Adipose EVs act as the messengers between ADSCs and macrophages to maintain the balance of metabolism and immunity, while drive a vicious cycle between hypertrophic adipocytes and inflammatory macrophages to cause immunometabolic imbalance. This review may provide valuable information about the physio- or pathological roles of adipose EVs and the application of adipose EVs in the diagnosis and treatment of metabolic diseases.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Marta Garcia-Contreras ◽  
Avnesh S. Thakor

AbstractNeurodegenerative diseases (NDs), such as Alzheimer’s disease (AD), are driven by neuroinflammation triggered by activated microglial cells; hence, the phenotypic regulation of these cells is an appealing target for intervention. Human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) may be a potential therapeutic candidate to treat NDs given their immunomodulatory properties. Evidence suggests that the mechanism of action of hAD-MSCs is through their secretome, which includes secreted factors such as cytokines, chemokines, or growth factors as well as extracellular vesicles (EVs). Recently, EVs have emerged as important mediators in cell communication given, they can transfer proteins, lipids, and RNA species (i.e., miRNA, mRNA, and tRNAs) to modulate recipient cells. However, the therapeutic potential of hAD-MSCs and their secreted EVs has not been fully elucidated with respect to human microglia. In this study, we determined the therapeutic potential of different hAD-MSCs doses (200,000, 100,000, and 50,000 cells) or their secreted EVs (50, 20, or 10 µg/ml), on human microglial cells (HMC3) that were activated by lipopolysaccharides (LPS). Upregulation of inducible nitric oxide synthase (iNOS), an activation marker of HMC3 cells, was prevented when they were cocultured with hAD-MSCs and EVs. Moreover, hAD-MSCs inhibited the secretion of proinflammatory factors, such as IL-6, IL-8, and MCP-1, while their secreted EVs promoted the expression of anti-inflammatory mediators such as IL-10 or TIMP-1 in activated microglia. The present data therefore support a role for hAD-MSCs and their secreted EVs, as potential therapeutic candidates for the treatment of NDs.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 495
Author(s):  
Prakash Gangadaran ◽  
Ramya Lakshmi Rajendran ◽  
Ji Min Oh ◽  
Eun Jung Oh ◽  
Chae Moon Hong ◽  
...  

Angiogenesis is defined as the generation of new blood vessels or the sprouting of endothelial cells from a pre-existing vascular network. Angiogenesis occurs during the growth and development of an organism, the response of organs or tissues to injury, and during cancer development and progression. The majority of studies on stem-cell-derived extracellular vesicles (EVs) have used cell lines, and have primarily focused on well-known solitary proteins. Here, we isolated stem cells from human adipose tissue (ADSCs), and we isolated EVs from them (ADSC-EVs). The ADSC-EVs were characterised and 20 angiogenic proteins were analysed using an angiogenic antibody array. Furthermore, we analysed the ability of ADSC-EVs to induce angiogenesis in vitro and in vivo. ADSC-EVs were positive for CD81 and negative for GM130, calnexin, and cytochrome-C. ADSC-EVs showed typical EV spherical morphology and were ~200 nm in size. ADSC-EVs were found to contain angiogenic proteins as cargo, among which interleukin 8 (IL-8) was the most abundant, followed by chemokine (C-C motif) ligand 2 (CCL2), a tissue inhibitor of metalloproteinases 1 (TIMP-1), TIMP-2, and vascular endothelial growth factor-D (VEGF-D). ADSC-EVs treatment increased the proliferation, migration, total vessel length, total number of junctions, and junction density of endothelial cells in vitro. The results of an in vivo Matrigel plug assay revealed that ADSC-EVs induced more blood vessels in the Matrigel compared with the control. These results demonstrate that ADSC-EVs contain angiogenic proteins as cargo and promote angiogenesis in vitro and in vivo. Therefore, ADSC-EVs have potential for therapeutic use in ischaemia.


Sign in / Sign up

Export Citation Format

Share Document