scholarly journals Characterization of Cassia Tora Seed (CTS) Oil-Based Biodiesel-Diesel Blends

2021 ◽  
Vol 7 (1) ◽  
pp. 2001-2009
Author(s):  
Saferiel Onatola Morakinyo ◽  
◽  
Idris Misau Muhammad ◽  
Abdulwadud Abdulkarim Yusuf ◽  
Umar Omeiza Aroke ◽  
...  

The paper reported on the characterization of CTS oil-based biodiesel-diesel blends. The study's primary objective are the physicochemical characterization of oil and biodiesel from Cassia Tora seed (CTS) oil, characterization of CTS oil-based biodiesel using FTIR and GCMS analysis. Extraction revealed the pres-ence of 8.8% oil in Cassia Tora seed. The CTS biodiesel's viscosity was found to be 0.9092, which is well above the petroleum diesel. The physiochemical characterization showed that 5, 12.5 and 20 % CTS oil-based biodiesel-diesel blends are within acceptable limit for combustion engine without modification having viscosities of 0.8744, 0.8764, and 0.8787 respec-tively while 100% CTS oil-based biodiesel would require upgrading to meet up with the recommended standard for fuel used as diesel in internal combustion engines. FTIR and GCMS analysis showed functional groups and characteristic peaks of fatty acids and methyl ester with carbon range from C13–C17, C16 constituted the major Fatty acid group and contained 61.69 % Monounsaturated Fatty Acid (MUFA), and 38.31 % Saturated Fatty Acid (SFA) giving a 94.3% biodiesel yield.

2017 ◽  
Vol 26 (44) ◽  
pp. 133
Author(s):  
Iván Ernesto Barragán-Gutiérrez ◽  
Alfonso López-Díaz ◽  
Wolfgang Krumm

This technological innovation project involved material identification, and design, installation, implementation, and evaluation of a pilot plant with capacity of 10 t per batch to recover materials and produce synthetic fuels (oil, syngas and solid) from shredded scrap waste. The results showed the proper way to separate materials (metals, and organic and inert compounds), and to perform the pyrolysis process to produce gas, oil, and coke as synthetic fuels from organic waste. The process started with the physicochemical characterization of the waste, followed by the selection of separation, sorting and processing technologies, and the definition of pyrolysis process parameters. Finally, the synthetic fuels were characterized, and uses for the furnace billet, ladle preheating, internal combustion engines, and auto generation were suggested. The results showed 82 % recovery of magnetic and non-magnetic metals, and production of synthetic fuels with PCI between 20 650 and 36 900 kJ/kg.


2021 ◽  
Vol 13 (15) ◽  
pp. 8237
Author(s):  
István Árpád ◽  
Judit T. Kiss ◽  
Gábor Bellér ◽  
Dénes Kocsis

The regulation of vehicular CO2 emissions determines the permissible emissions of vehicles in units of g CO2/km. However, these values only partially provide adequate information because they characterize only the vehicle but not the emission of the associated energy supply technology system. The energy needed for the motion of vehicles is generated in several ways by the energy industry, depending on how the vehicles are driven. These methods of energy generation consist of different series of energy source conversions, where the last technological step is the vehicle itself, and the result is the motion. In addition, sustainability characterization of vehicles cannot be determined by the vehicle’s CO2 emissions alone because it is a more complex notion. The new approach investigates the entire energy technology system associated with the generation of motion, which of course includes the vehicle. The total CO2 emissions and the resulting energy efficiency have been determined. For this, it was necessary to systematize (collect) the energy supply technology lines of the vehicles. The emission results are not given in g CO2/km but in g CO2/J, which is defined in the paper. This new method is complementary to the European Union regulative one, but it allows more complex evaluations of sustainability. The calculations were performed based on Hungarian data. Finally, using the resulting energy efficiency values, the emission results were evaluated by constructing a sustainability matrix similar to the risk matrix. If only the vehicle is investigated, low CO2 emissions can be achieved with vehicles using internal combustion engines. However, taking into consideration present technologies, in terms of sustainability, the spread of electric-only vehicles using renewable energies can result in improvement in the future. This proposal was supported by the combined analysis of the energy-specific CO2 emissions and the energy efficiency of vehicles with different power-driven systems.


2021 ◽  
Vol 2021 (6) ◽  
pp. 5421-5425
Author(s):  
MICHAL RICHTAR ◽  
◽  
PETRA MUCKOVA ◽  
JAN FAMFULIK ◽  
JAKUB SMIRAUS ◽  
...  

The aim of the article is to present the possibilities of application of computational fluid dynamics (CFD) to modelling of air flow in combustion engine intake manifold depending on airbox configuration. The non-stationary flow occurs in internal combustion engines. This is a specific type of flow characterized by the fact that the variables depend not only on the position but also on the time. The intake manifold dimension and geometry strongly effects intake air amount. The basic target goal is to investigate how the intake trumpet position in the airbox impacts the filling of the combustion chamber. Furthermore, the effect of different distances between the trumpet neck and the airbox wall in this paper will be compared.


2019 ◽  
Vol 178 (3) ◽  
pp. 182-186
Author(s):  
Zbigniew SROKA ◽  
Maciej DWORACZYŃSKI

The modification of the downsizing trend of internal combustion engines towards rightsizing is a new challenge for constructors. The change in the displacement volume of internal combustion engines accompanying the rightsizing idea may in fact mean a reduction or increase of the defining swept volume change factors and thus may affect the change in the operating characteristics as a result of changes in combustion process parameters - a research problem described in this publication. Incidents of changes in the displacement volume were considered along with the change of the compression space and at the change of the geometric degree of compression. The new form of the mathematical dependence describing the efficiency of the thermodynamic cycle makes it possible to evaluate the opera-tion indicators of the internal combustion engine along with the implementation of the rightsizing idea. The work demonstrated the in-variance of cycle efficiency with different forms of rightsizing.


2021 ◽  
Vol 4 (30) ◽  
pp. 99-105
Author(s):  
A. V. Summanen ◽  
◽  
S. V. Ugolkov ◽  

This article discusses the issues of assessing the technical condition of the camshaft, internal combustion engine. The necessary parameters for assessing the technical condition of the engine camshaft have been determined. How and how to measure and calculate this or that parameter is presented in detail. Methods for calculating the parameters are presented. A scheme and method for measuring neck wear, determining the height of the cam, determining the beating of the central journal of the camshaft are proposed. The main defects of the camshafts are presented. The issues of the influence of these parameters on the operability of the camshaft and the internal combustion engine as a whole are considered.


2021 ◽  
pp. 13-20
Author(s):  

The prospects of using the gas-static suspension of the internal combustion engine piston in transport vehicles and power plants are considered. The diagram of the piston and the method for calculating the stiffness and bearing capacity of the gas layer surrounding the piston are presented, as well as the results of experiments that showed the relevance of this method. The possibility of gas and static centering of the engine piston is confirmed. Keywords: internal combustion engine, piston, gasstatic suspension, stiffness, bearing capacity, gas medium. [email protected]


2021 ◽  
pp. 41-47
Author(s):  
Vladimir Tupov ◽  
O. Matasova

Insertion losses as the main characteristic that mathematically describes the acoustic efficiency of a noise silencer has been considered. This characteristic shows the reduction of noise generated by its source, in particular by the internal combustion engine’s exhaust system, at the control point as a silencer use result. Has been presented a mathematical description of the insertion losses, and have been considered parameters necessary for calculating this characteristic. Has been demonstrated the analytical dependence of impedance for the sound emission by the exhaust system’s end hole from the coefficient of acoustic waves reflection by this hole. The performed analysis of the widely used formulas for calculating the coefficient of sound reflection by the end hole has showed their insufficient accuracy for project designs performing. Have been proposed calculation dependences providing high accuracy for calculations of the reflection coefficient modulus, and the attached length of the channel end hole without a flange in the entire range of the existence of plane waves in it. It has been shown that the end correction of this hole at ka = 0 is 0.6127, and not 0.6133, as it was mistakenly believed until now in world acoustics. Has been proposed a method for calculation the exhaust noise source internal impedance. This method more accurately, in comparison with the already known ones, describes the acoustic processes in the internal combustion engine’s exhaust manifold, thanks to increases the accuracy of calculation the silencer acoustic efficiency, that allows develop the silencer at the early stages of the design of an automotive internal combustion engine.


Author(s):  
Satheesh Makkapati ◽  
Kim Ku ◽  
Steve Poe

Generating an optimum cam profile for an internal combustion engine application is usually a very involved process. This is because of the challenge faced by the engine engineers to perform several trade-offs between fuel economy, performance, durability and emissions. Typically, the trade offs are worked out using several computer codes and with the involvement of a cross-functional team of engineers. Hence, there is a need to develop a tool that can encapsulate the various computer codes and can manipulate the cam profile with ease. With the existence of such an automated tool, optimization of the cam profile can be achieved with a specified trade-off between the several metrics identified above. This paper describes the development of such a tool, and discusses the ingredients that make it flexible and computationally efficient. Results from the use of this tool are documented in this paper as well.


2019 ◽  
pp. 146808741989358 ◽  
Author(s):  
Mostafa A ElBahloul ◽  
ELsayed S Aziz ◽  
Constantin Chassapis

Fuel conversion efficiency is one of the main concerns in the field of internal combustion engine systems. Although the Otto cycle delivers the maximum efficiency possible in theory, the kinematics of the slider–crank mechanism of the conventional internal combustion engines makes it difficult to reach this level of efficiency in practice. This study proposes using the unique hypocycloid gear mechanism instead of the conventional slider–crank mechanism for the internal combustion engines to increase engine efficiency and minimize frictional power losses. The hypocycloid gear mechanism engine’s kinematics provides the means for the piston-rod assembly to reciprocate in a straight-line motion along the cylinder axis besides achieving a nonlinear rate of piston movement. As a result, this characteristic allows for a true constant-volume combustion, which in turn would lead to higher work output. An in-cylinder gas volume change model of the hypocycloid gear mechanism engine was developed and incorporated into the thermodynamic model for the internal combustion engine cycle. The thermodynamic model of the hypocycloid gear mechanism engine was developed and simulated using MATLAB/Simulink software. A comparison between the conventional engine and the hypocycloid gear mechanism engine in terms of engine performance characteristics showed the enhancements achieved using hypocycloid gear mechanism for internal combustion engine applications. The hypocycloid gear mechanism engine analysis results indicated higher engine efficiency approaching that of the Otto cycle.


Sign in / Sign up

Export Citation Format

Share Document