scholarly journals Navigating Unmountable Media with the Digital Forensics XML File System

1970 ◽  
Vol 12 (2) ◽  
pp. 309-326
Author(s):  
Alexander Nelson ◽  
Alexandra Chassanoff ◽  
Alexendra Holloway

Some computer storage is non-navigable by current general-purpose computers. This could be because of obsolete interface software, or a more specialized storage system lacking widespread support. These storage systems may contain artifacts of great cultural, historical, or technical significance, but implementing compatible interfaces that are fully navigable may be beyond available resources. We developed the DFXML File System (DFXMLFS) to enable navigation of arbitrary storage systems that fulfill a minimum feature set of the POSIX file system standard. Our approach advocates for a two-step workflow that separates parsing the storage’s file system structures from navigating the storage like a contemporary file system, including file contents. The parse extracts essential file system metadata, serializing to Digital Forensics XML for later consumption as a read-only file system.

2004 ◽  
Vol 1 (4) ◽  
pp. 298-309 ◽  
Author(s):  
Florian Buchholz ◽  
Eugene Spafford

2019 ◽  
Vol 214 ◽  
pp. 04048
Author(s):  
Tigran Mkrtchyan ◽  
Olufemi Adeyemi ◽  
Patrick Fuhrmann ◽  
Vincent Garonne ◽  
Dmitry Litvintsev ◽  
...  

For over a decade, dCache.ORG has provided robust software, called dCache, that is used at more than 80 universities and research institutes around the world, allowing these sites to provide reliable storage services for the WLCG experiments and many other scientific communities. The flexible architecture of dCache allows running it in a wide variety of configurations and platforms - from all-in-one Raspberry-Pi up to hundreds of nodes in multi-petabyte infrastructures. The life cycle of scientific data is well defined - collected, processed, archived and finally deleted, when it’s not needed anymore. Moreover, during all those stages the data is never modified: either the original data is used, or new derived data is produced. With this knowledge, dCache was designed to handle immutable files as efficiently as possible. Data replication, HSM connectivity and data-server independent operations are only possible due to the immutable nature of stored data. Nowadays many commercial vendors provide such write-once-read-many or WORM storage systems, as they become more and more demanded with grown demand of audio, photo and video content in the web. On the other hand by providing standard NFSv4.1 interface dCache is often used as a general-purpose file-system, especially by new communities, like photon scientists or microbiologists. Although many users are aware of data immutability, some applications and use cases still require in-place updates of stored files. To satisfy new requirements some fundamental changes have to be applied to dCache’s core design. However, new developments must not compromise any aspect of existing functionality. In this presentation we will show new developments in dCache to turn it into a regular file system. We will discuss the challenges to build a distributed storage system, ‘life’ with POSIX compliance, handling of multiple replicas and backward compatibility by providing WORM and noWORM capabilities within the same storage system.


2019 ◽  
Vol 15 (S367) ◽  
pp. 464-466
Author(s):  
Paul Bartus

AbstractDuring the last years, the amount of data has skyrocketed. As a consequence, the data has become more expensive to store than to generate. The storage needs for astronomical data are also following this trend. Storage systems in Astronomy contain redundant copies of data such as identical files or within sub-file regions. We propose the use of the Hadoop Distributed and Deduplicated File System (HD2FS) in Astronomy. HD2FS is a deduplication storage system that was created to improve data storage capacity and efficiency in distributed file systems without compromising Input/Output performance. HD2FS can be developed by modifying existing storage system environments such as the Hadoop Distributed File System. By taking advantage of deduplication technology, we can better manage the underlying redundancy of data in astronomy and reduce the space needed to store these files in the file systems, thus allowing for more capacity per volume.


2014 ◽  
Vol 556-562 ◽  
pp. 5371-5376
Author(s):  
Ding Wei Wu ◽  
Qiang Wu ◽  
Xi Cheng Fu ◽  
Zhi Zhong Ye ◽  
Jia Lun Lin

In recent years, hybrid storage has gradually become a hotspot in the research of data storage owing to its high-performance and low cost. An OpenStack-based hybrid storage system is presented in this paper. According to the characteristics, the data is divided into small data, big data and temporary data in this hybrid storage system; meanwhile a storage strategy, combining database storage system, the virtual file system and servers file system, is designed. In the application of iCampus project, this proposed hybrid storage system shows better performance and higher efficiency than the traditional single storage systems.


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


2021 ◽  
Author(s):  
Mervette El Batouti ◽  
H. A. Fetouh

New ferroelectric perovskite sample: excellent dielectric, negligible dielectric loss for energy storage systems such as solar cells, solar ponds, and thermal collectors has been prepared at low cost using nanotechnology.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 549
Author(s):  
Eric Pareis ◽  
Eric Hittinger

With an increase in renewable energy generation in the United States, there is a growing need for more frequency regulation to ensure the stability of the electric grid. Fast ramping natural gas plants are often used for frequency regulation, but this creates emissions associated with the burning of fossil fuels. Energy storage systems (ESSs), such as batteries and flywheels, provide an alternative frequency regulation service. However, the efficiency losses of charging and discharging a storage system cause additional electrical generation requirements and associated emissions. There is not a good understanding of these indirect emissions from charging and discharging ESSs in the literature, with most sources stating that ESSs for frequency regulation have lower emissions, without quantification of these emissions. We created a model to estimate three types of emissions (CO2, NOX, and SO2) from ESSs providing frequency regulation, and compare them to emissions from a natural gas plant providing the same service. When the natural gas plant is credited for the generated electricity, storage systems have 33% to 68% lower CO2 emissions than the gas turbine, depending on the US eGRID subregion, but higher NOX and SO2 emissions. However, different plausible assumptions about the framing of the analysis can make ESSs a worse choice so the true difference depends on the nature of the substitution between storage and natural gas generation.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Doerte Laing ◽  
Wolf-Dieter Steinmann ◽  
Michael Fiß ◽  
Rainer Tamme ◽  
Thomas Brand ◽  
...  

Cost-effective integrated storage systems are important components for the accelerated market penetration of solarthermal power plants. Besides extended utilization of the power block, the main benefits of storage systems are improved efficiency of components, and facilitated integration into the electrical grids. For parabolic trough power plants using synthetic oil as the heat transfer medium, the application of solid media sensible heat storage is an attractive option in terms of investment and maintenance costs. For commercial oil trough technology, a solid media sensible heat storage system was developed and tested. One focus of the project was the cost reduction of the heat exchanger; the second focus lies in the energetic and exergetic analysis of modular storage operation concepts, including a cost assessment of these concepts. The results show that technically there are various interesting ways to improve storage performance. However, these efforts do not improve the economical aspect. Therefore, the tube register with straight parallel tubes without additional structures to enhance heat transfer has been identified as the best option concerning manufacturing aspects and investment costs. The results of the energetic and exergetic analysis of modular storage integration and operation concepts show a significant potential for economic optimization. An increase of more than 100% in storage capacity or a reduction of more than a factor of 2 in storage size and therefore investment cost for the storage system was calculated. A complete economical analysis, including the additional costs for this concept on the solar field piping and control, still has to be performed.


Author(s):  
Jaeho Jeong ◽  
Seong-Joon Park ◽  
Jae-Won Kim ◽  
Jong-Seon No ◽  
Ha Hyeon Jeon ◽  
...  

Abstract Motivation In DNA storage systems, there are tradeoffs between writing and reading costs. Increasing the code rate of error-correcting codes may save writing cost, but it will need more sequence reads for data retrieval. There is potentially a way to improve sequencing and decoding processes in such a way that the reading cost induced by this tradeoff is reduced without increasing the writing cost. In past researches, clustering, alignment, and decoding processes were considered as separate stages but we believe that using the information from all these processes together may improve decoding performance. Actual experiments of DNA synthesis and sequencing should be performed because simulations cannot be relied on to cover all error possibilities in practical circumstances. Results For DNA storage systems using fountain code and Reed-Solomon (RS) code, we introduce several techniques to improve the decoding performance. We designed the decoding process focusing on the cooperation of key components: Hamming-distance based clustering, discarding of abnormal sequence reads, RS error correction as well as detection, and quality score-based ordering of sequences. We synthesized 513.6KB data into DNA oligo pools and sequenced this data successfully with Illumina MiSeq instrument. Compared to Erlich’s research, the proposed decoding method additionally incorporates sequence reads with minor errors which had been discarded before, and thuswas able to make use of 10.6–11.9% more sequence reads from the same sequencing environment, this resulted in 6.5–8.9% reduction in the reading cost. Channel characteristics including sequence coverage and read-length distributions are provided as well. Availability The raw data files and the source codes of our experiments are available at: https://github.com/jhjeong0702/dna-storage.


2021 ◽  
Author(s):  
Gregory Kaminski ◽  
Philip Odonkor

Abstract The decreasing cost of implementation and increasing regulatory incentive to lower energy use have led to an increased adoption of distributed energy resources in recent years. This increased adoption has been further fueled by a surge in energy consciousness and the expansion of energy-saving products and technologies. To lower reliance on the electrical grid and fully realize the benefits of distributed energy resources, many consumers have also elected to use battery systems to store generated energy. For owners of multiple buildings, or multiple owners willing to share the operational cost, building clusters may be formed to more effectively take advantage of these distributed resources and storage systems. The implementation of these systems in existing buildings introduces the question of what makes a “good” building cluster. Furthermore, the scalable nature of distributed energy sources and storage systems create countless possibilities for system configuration. Through comparison of unique two-building clusters from a stock of five buildings with a given distributed energy resource (in this case, a solar photovoltaic panel array) and energy storage system, we develop a fundamental understanding of the underlying factors that allow building clusters to be less reliant on the utility grid and make better use of energy generation and storage systems.


Sign in / Sign up

Export Citation Format

Share Document