scholarly journals Analysis of Shell and Tube Heat Exchanger Using Different Nano Fluids

Author(s):  
Pavani Nookaratnam D
2019 ◽  
Vol 12 (4) ◽  
pp. 350-356 ◽  
Author(s):  
Mohammed Kareemullah ◽  
K.M. Chethan ◽  
Mohammed K. Fouzan ◽  
B.V. Darshan ◽  
Abdul Razak Kaladgi ◽  
...  

Background:: In Shell and Tube Heat Exchanger (STHX), heat is exchanged between hot water (coming from industrial outlet by forced convection) to the cold water. Instead of water, if Nano fluids are used into these tubes, then there is a possibility of improved heat transfer because of high thermal conductivity of the nanofluids. Objective:: From many literature and patents, it was clear that the study of STHX using metal oxide nanoparticles is very scarce. Therefore, the objective of the present investigation is to check the thermal performance of STHX operated with zinc oxide nanofluid and compare with water as the base fluid. Methods:: Heat transfer analysis of a shell and tube heat exchanger was carried out experimentally using Zinc oxide as a nanofluid. Mass flow rate on tube side was varied while on the shell side it was kept constant. Various heat transfer parameters like heat transfer coefficient, heat transfer rate effectiveness and LMTD (Log Mean Temperature Difference) were studied. The experimental readings were recorded after the steady-state is reached under forced flow conditions. Results:: It was found that the effectiveness improves with increase in mass flow rate of nanofluids as compared to base fluid. Conclusion:: From the obtained results, it was concluded that heat transfer enhancement and effectiveness improvement does occur with nano fluids but at the cost of pumping power.


2019 ◽  
Vol 5 (10) ◽  
pp. 3
Author(s):  
Sunil Kumar ◽  
Ravindra Mohan

Heat exchanger is an important device which is used in thermal systems in many industrial fields. Nano fluids are recently employed as coolants to improve the efficacy of heat exchangers. Regarding unique characteristics of Nano fluids, research studies in this area have witnessed a remarkable growth. Latest investigations conducted on use of Nano fluids in heat exchangers including those carried out on plate heat exchangers, double pipe heat exchangers, shell and tube heat exchangers, and compact heat exchangers are reviews and summarized. Meanwhile, some very interesting aspects of Nano fluids in combination with heat exchangers are presented.  The challenges and prospects for future research are presented in this paper.


Author(s):  
Leonardo Cavalheiro Martinez ◽  
Leonardo Cavalheiro Martinez ◽  
Viviana Mariani ◽  
Marcos Batistella Lopes

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Swanand Gaikwad ◽  
Ashish Parmar

AbstractHeat exchangers possess a significant role in energy transmission and energy generation in most industries. In this work, a three-dimensional simulation has been carried out of a shell and tube heat exchanger (STHX) consisting of segmental baffles. The investigation involves using the commercial code of ANSYS CFX, which incorporates the modeling, meshing, and usage of the Finite Element Method to yield numerical results. Much work is available in the literature regarding the effect of baffle cut and baffle spacing as two different entities, but some uncertainty pertains when we discuss the combination of these two parameters. This study aims to find an appropriate mix of baffle cut and baffle spacing for the efficient functioning of a shell and tube heat exchanger. Two parameters are tested: the baffle cuts at 30, 35, 40% of the shell-inside diameter, and the baffle spacing’s to fit 6,8,10 baffles within the heat exchanger. The numerical results showed the role of the studied parameters on the shell side heat transfer coefficient and the pressure drop in the shell and tube heat exchanger. The investigation shows an increase in the shell side heat transfer coefficient of 13.13% when going from 6 to 8 baffle configuration and a 23.10% acclivity for the change of six baffles to 10, for a specific baffle cut. Evidence also shows a rise in the pressure drop with an increase in the baffle spacing from the ranges of 44–46.79%, which can be controlled by managing the baffle cut provided.


Sign in / Sign up

Export Citation Format

Share Document