scholarly journals An Investigation on Fracture Toughness of Glass Fiber Composite with Banana Fiber Composite

Author(s):  
Girija. M
Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7412
Author(s):  
Mohammed Y. Abdellah ◽  
Mohamed K. Hassan ◽  
Ahmed F. Mohamed ◽  
Ahmed H. Backar

In this paper, the mechanical properties of fiber-reinforced epoxy laminates are experimentally tested. The relaxation behavior of carbon and glass fiber composite laminates is investigated at room temperature. In addition, the impact strength under drop-weight loading is measured. The hand lay-up technique is used to fabricate composite laminates with woven 8-ply carbon and glass fiber reinforced epoxy. Tensile tests, cyclic relaxation tests and drop weight impacts are carried out on the carbon and glass fiber-reinforced epoxy laminates. The surface release energy GIC and the related fracture toughness KIC are important characteristic properties and are therefore measured experimentally using a standard test on centre-cracked specimens. The results show that carbon fiber-reinforced epoxy laminates with high tensile strength give high cyclic relaxation performance, better than the specimens with glass fiber composite laminates. This is due to the higher strength and stiffness of carbon fiber-reinforced epoxy with 600 MPa compared to glass fiber-reinforced epoxy with 200 MPa. While glass fibers show better impact behavior than carbon fibers at impact energies between 1.9 and 2.7 J, this is due to the large amount of epoxy resin in the case of glass fiber composite laminates, while the impact behavior is different at impact energies between 2.7 and 3.4 J. The fracture toughness KIC is measured to be 192 and 31 MPa √m and the surface energy GIC is measured to be 540.6 and 31.1 kJ/m2 for carbon and glass fiber-reinforced epoxy laminates, respectively.


2021 ◽  
Vol 5 (10) ◽  
pp. 264
Author(s):  
Mohamed K. Hassan ◽  
Ahmed F. Mohamed ◽  
Khalil Abdelrazek Khalil ◽  
Mohammed Y. Abdellah

The mechanical and ring stiffness of glass fiber pipes are the most determining factors for their ability to perform their function, especially in a work environment with difficult and harmful conditions. Usually, these pipes serve in rough underground environments of desert and petroleum fields; therefore, they are subjected to multi-type deterioration and damage agents. In polymers and composite materials, corrosion is identified as the degradation in their properties. In this study, tension and compression tests were carried out before and after preconditioning in a corrosive agent for 60 full days to reveal corrosion influences. Moreover, the fracture toughness is measured using a standard single edge notch bending. Ring stiffness of such pipes which, are considered characteristic properties, is numerically evaluated using the extended finite element method before and after preconditioning. The results reported that both tensile and compressive strengths degraded nearly more than 20%. Besides the fracture toughness decrease, the stiffness ring strength is reduced, and the finite element results are in good agreement with the experimental findings.


2019 ◽  
Vol 777 (12) ◽  
pp. 73-77
Author(s):  
B.A. BONDAREV ◽  
◽  
T.N. STORODUBTSEVA ◽  
D.A. KOPALIN ◽  
S.V. KOSTIN ◽  
...  

2013 ◽  
Vol 38 (22) ◽  
pp. 9271-9284 ◽  
Author(s):  
Andrew H. Weisberg ◽  
Salvador M. Aceves ◽  
Francisco Espinosa-Loza ◽  
Elias Ledesma-Orozco ◽  
Blake Myers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document