scholarly journals A Study on Durability Properties of High Strength Concrete by Effect with Mineral Admixtures in Aggressive Environment

Author(s):  
Mrs. Nagulapalli Mounika
2022 ◽  
Vol 1048 ◽  
pp. 359-365
Author(s):  
Ihtesham Hussain Mohammed ◽  
Ahmed Majid Salim Al Aamri ◽  
Shakila Javed ◽  
Yahya Ubaid Al Shamsi

In this study, an experimental investigation was done to study the behaviour of Normal Strength Concrete (NSC) and High Strength Concrete (HSC) Plain beams under torsion with the concrete mix of M40 and M100. No mineral admixtures are used to obtain the required strength of concrete. Eight NSC beams and eight HSC beams whose width was varying with 75 mm, 100 mm, and 150 mm; depth varying as 75 mm, 100 mm, 150 mm and 200 mm; and span of the beams varying 600 mm, 800 mm and 1200 mm were casted and cured to stud the effect of torsion. The principle aim of this study was to understand the torsional behaviour of the NSC and HSC beams for rotation, cracking, size effect and torsional strength. A standard torsional loading method was used for conducting the testing of beams. The results obtained were compared with different theories and code equations. It was observed that the torsional strength of the beam increases with the increase in strength of concrete. HSC beams have higher torsional strength than the NSC beams which has the same amount of reinforcement.


2011 ◽  
Vol 261-263 ◽  
pp. 411-415
Author(s):  
Er Bu Tian ◽  
Feng Chao Wang ◽  
Ren Wei Zhang ◽  
Tao Ji

People often use superplasticizer and mineral admixtures (such as steel slag, slag, etc.) to increase the density of concrete and improve concrete strength, but don’t use coarse aggregate gradding. The paper selects the coarse aggregate of skeleton structure from several grading concept, and uses Uniform Design to test high strength concrete workability, and analyses results. It is shown from the results that the method of Uniform Design can significantly reduce the workload, and concrete mixture slump increases linearly with the water-cement ratio and sand percentage, but decreases linearly with steel slag addition, and the water released from the flocculation of cement by superplasticizer can increase the slump, and most of water plays the role of lubricant before it reacts with cement, and the effect of slump that sand extends coarse aggregate skeleton are greater than that sand surface area increases.


Author(s):  
Afzal Basha Syed ◽  
Jayarami Reddy B ◽  
Sashidhar C

In present era, high-strength concrete is progressively utilized in modern concrete technology and particularly in the construction of elevated structures. This examination has been directed to explore the properties of high-strength concrete that was delivered by using stone powder (SP) as an option of extent on sand after being processed. The aim of the research is to study the effect of replacement of sand with stone powder and substitution of cement with mineral admixtures (GGBS & Zeolite) on the mechanical properties of high strength concrete. The test results showed clear improvement in compression and split tensile nature of concrete by using stone powder and mineral admixtures together in concrete. The increment in the magnitude of compressive strength and split tensile strength are comparable with conventional concrete.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Tongyuan Ni ◽  
Yang Yang ◽  
Chunping Gu ◽  
Jintao Liu ◽  
Jin Chen ◽  
...  

Tensile creep is an important parameter to evaluate cracking probability of high-strength concrete (HSC) structure, and the mineral admixtures have great effect on it. In this paper, the early-age tensile basic creep behaviors of HSC containing fly ash (FA) and blast furnace slag (BS) were investigated by experiments, and the influences of loading age and stress level (stress-strength ratio of initial loading) were evaluated. The results showed that FA promoted the early-age tensile basic creep while BS inhibited the early-age tensile creep. Moreover, the influence of loading age on early-age tensile basic creep of HSC was more significant, and the affected ages’ duration was longer than that of plain concrete. The early-age tensile basic creep of HSC containing admixtures also showed linear creep characteristic after a certain age as HSC without admixtures, and the linear characteristic was more obvious at a later loading age. The tensile basic creep velocity of HSC containing FA was the highest, while HSC containing BS exhibited the lowest velocity. The influence of admixtures on velocities of tensile basic creep was gradually attenuated with the age growth in holding period.


2012 ◽  
Vol 450-451 ◽  
pp. 1409-1414 ◽  
Author(s):  
Jun Jie Zeng ◽  
Zhong He Shui ◽  
Wan Ru Zhang ◽  
Zheng Leng

The experimental study was performed on the relationship between the mechanical and durability properties of high-strength concrete with metakaolin (MK) and slag. The compressive strength, chloride penetrability and pore structure of the OPC and the concrete with MK and slag were measured. It is found that MK can significantly increase the compressive strength, decrease the chloride ions migration coefficient and improve the pore structure of the steam cured high-strength concrete. The chloride resistance is improved obviously by 5% MK and further increase of the MK dosage performs a little change of the chloride migration coefficient. Better improvement effect on the mechanical and durability properties is obtained with the incorporation of 10% MK and 10% slag. Linear relationship is found between the coarse pore porosity and the compressive strength, while the chloride migration coefficient correlates well with the capillary pore volume.


Sign in / Sign up

Export Citation Format

Share Document