scholarly journals Simulation and Analysis of Double Pipe Heat Exchanger

Author(s):  
Nikheel Joshi

A heat exchanger is a engineering device used for efficient heat transfer from one fluid to another at different temperatures and thermal in contact. Thermal properties of fluids play a significant role in various cooling and heating uses. Traditional fluids are of low thermal conductivity, so researchers are tried to enhance thermal conductivity by adding nano-particles. The model of double pipe heat exchanger was develop by using ANSYS workbench. Al2O3 mixed with water as a base fluid for analyzed their performance in double pipe heat exchanger. Al2O3 is a excellent material for heat transfer enhancement because, it has better physical as well as chemical properties. In this paper, we performed CFD analysis on double pipe heat exchanger using ANSYS FLUENT software by varying the concentrations of nano-particle (0.5%, 1%, 2%) in water. CFD analysis on double pipe heat exchanger by using Al2O3/water (nano-fluid) as cold fluid and water as a hot fluid. It is observed that nano-fluid with 2% concentration having more overall heat transfer coefficient.

Author(s):  
M.L.R. Chaitanya Lahari ◽  
◽  
P.H.V. Sesha Talpa Sai ◽  
K.V. Sharma ◽  
K.S. Narayanaswamy ◽  
...  

The Nusselt number, overall heat transfer, and convective heat transfer coefficients of glycerol-water-based Cu nanofluids flowing in a parallel flow double pipe heat exchanger are estimated using CFD analysis. Single-phase fluid approach technique is used in the analysis. Ansys 19.0 workbench was used to create the heat exchanger model. Heat transfer tests with nanofluids at three flow rates (680<Re<1900) are carried out in a laminar developing flow zone. For testing, a 500 mm long concentric double pipe heat exchanger with tube dimensions of ID=10.2 mm, OD= 12.7 mm, and annulus dimensions of ID=17.0 mm, OD= 19.5 mm is employed. Copper is utilized for the tube and annulus material. This study employed three-particle volume concentrations of 0.2 percent, 0.6 percent, and 1.0 percent. The mass flow rates of hot water in the tube are 0.2, 0.017, and 0.0085 kg/s, while the mass flow rates of nanofluids in the annulus are 0.03, 0.0255, and 0.017 kg/s. The average temperature of nanofluids is 36°C, whereas hot water is 58°C. In comparison to base liquid, the overall heat transfer coefficient and convective HTC of 1.0 percent copper nanofluids at 0.03 kg/s are raised by 26.2 and 46.2 percent, respectively. The experimental findings are compared to CFD values, and they are in close agreement.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1656 ◽  
Author(s):  
Mehdi Ghalambaz ◽  
Hossein Arasteh ◽  
Ramin Mashayekhi ◽  
Amir Keshmiri ◽  
Pouyan Talebizadehsardari ◽  
...  

This study investigated the laminar convective heat transfer and fluid flow of Al2O3 nanofluid in a counter flow double-pipe heat exchanger equipped with overlapped twisted tape inserts in both inner and outer tubes. Two models of the same (co-swirling twisted tapes) and opposite (counter-swirling twisted tapes) angular directions for the stationary twisted tapes were considered. The computational fluid dynamic simulations were conducted through varying the design parameters, including the angular direction of twisted tape inserts, nanofluid volume concentration, and Reynolds number. It was found that inserting the overlapped twisted tapes in the heat exchanger significantly increases the thermal performance as well as the friction factor compared with the plain heat exchanger. The results indicate that models of co-swirling twisted tapes and counter-swirling twisted tapes increase the average Nusselt number by almost 35.2–66.2% and 42.1–68.7% over the Reynolds number ranging 250–1000, respectively. To assess the interplay between heat transfer enhancement and pressure loss penalty, the dimensionless number of performance evaluation criterion was calculated for all the captured configurations. Ultimately, the highest value of performance evaluation criterion is equal to 1.40 and 1.26 at inner and outer tubes at the Reynolds number of 1000 and the volume fraction of 3% in the case of counter-swirling twisted tapes model.


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Muhammad Ishaq ◽  
Khalid Saifullah Syed ◽  
Zafar Iqbal ◽  
Ahmad Hassan

A DG-FEM based numerical investigation has been performed to explore the influence of the various geometric configurations on the thermal performance of the conjugate heat transfer analysis in the triangular finned double pipe heat exchanger. The computed results dictate that Nusselt number in general rises with values of the conductivity ratio of solid and fluid, for the specific configuration parameters considered here. However, the performance of these parameters shows strong influence on the conductivity ratio. Consequently, these parameters must be selected in consideration of the thermal resistance, for better design of heat exchanger.


2018 ◽  
Vol 57 (4) ◽  
pp. 3709-3725 ◽  
Author(s):  
Marwa A.M. Ali ◽  
Wael M. El-Maghlany ◽  
Yehia A. Eldrainy ◽  
Abdelhamid Attia

2019 ◽  
Vol 140 ◽  
pp. 580-591 ◽  
Author(s):  
Ganesh Kumar Poongavanam ◽  
Balaji Kumar ◽  
Sakthivadivel Duraisamy ◽  
Karthik Panchabikesan ◽  
Velraj Ramalingam

Sign in / Sign up

Export Citation Format

Share Document