scholarly journals Molecular Docking Studies of Secondary Metabolites against Sequestosome-1 to Treat Parkinson Disease

Author(s):  
Neeraj .

Parkinson's disease (PD) is one of the major progressive neurological disorders. It occurs due to a low level of a chemical substance in the brain known as Dopamine, which controls the muscle movements of the body. In many cases, PD occurs due to a low level of dopamine. PD generally appears in persons between the ages of 50 & 60. Some common symptoms of Parkinson's are slow movements, tremors, change in voice, depression, anxiety, hallucinations, psychosis, etc. Diagnosis of PD is done by CAT (Computerized Axial Tomography) scan or MRI (Magnetic Resonance Imaging, and DAT (Dopamine Transporter) scan. No specific cure for PD but Medication, Surgery, Adequate rest, exercise, and a balanced diet, and Several different drugs may help to relieve Parkinson's Disease (PD). According to the in silico study, we found that Rosmarinic Acid (RA) was the compound, which may inhibit the activities of Sequestosome-1. After in vitro and in vivo studies, Rosmarinic Acid may be an effective drug to control Parkinson's disease (PD).

Author(s):  
Love Kumar

Parkinson’s disease (PD) is a common known neurodegenerative disorder with unknown etiology. It was estimated about 0.3% prevalence in the U.S population and enhance to 4 to 5% in older than 85 years. All studies were depending on the molecular docking where all ligands and protein PARK7 (PDB ID: 2RK3) were interacted by docked process. Some natural compounds was selected such as Harmine, Alloxan, Alpha spinasterol, Myrcene, and Vasicinone and PARK7 (PDB ID: 2RK3) protein. According to the PyRx and SWISS ADME result, Harmine was the only ligand which was showing minimum binding affinity. AutoDock Vina software was used for docking process between ligand (Harmine) and receptor protein PARK7 (PDB ID: 2RK3). The result was visualized under PyMol. Harmine was inhibiting the activity of PARK7 (PDB ID: 2RK3) and it may be used for the treatment of PD in future prospect after its in vitro and in vivo studies.


2020 ◽  
Vol 101 ◽  
pp. 103986 ◽  
Author(s):  
Fernanda Rodríguez-Enríquez ◽  
Dolores Viña ◽  
Eugenio Uriarte ◽  
José Angel Fontenla ◽  
Maria J. Matos

Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1311
Author(s):  
Paola Signorelli ◽  
Carmela Conte ◽  
Elisabetta Albi

Advances over the past decade have improved our understanding of the role of sphingolipid in the onset and progression of Parkinson’s disease. Much attention has been paid to ceramide derived molecules, especially glucocerebroside, and little on sphingomyelin, a critical molecule for brain physiopathology. Sphingomyelin has been proposed to be involved in PD due to its presence in the myelin sheath and for its role in nerve impulse transmission, in presynaptic plasticity, and in neurotransmitter receptor localization. The analysis of sphingomyelin-metabolizing enzymes, the development of specific inhibitors, and advanced mass spectrometry have all provided insight into the signaling mechanisms of sphingomyelin and its implications in Parkinson’s disease. This review describes in vitro and in vivo studies with often conflicting results. We focus on the synthesis and degradation enzymes of sphingomyelin, highlighting the genetic risks and the molecular alterations associated with Parkinson’s disease.


Author(s):  
Fariha Khaliq

Parkinson’s disease one of the most complex neurological disorder. The disease risk and progression are due to common genetic variants. Approximately 6.2 million cases are reported each year according to the statistics published in 2015 whereas it is expected that this number will be twice by 2040. There are two types of Parkinson’s disease, familial Parkinson’s disease, and sporadic Parkinson’s disease. The disease is characterized by the presence of Lewy bodies. Adult age increases the risk of Parkinson’s disease. In this review, we provide an overview of the disease pathology of Lewy bodies in the occurrence of Parkinson’s disease, in vitro studies to determine the role of iPSCs in treatment of Parkinson’s disease, in vivo studies to determine the role of animal model in studying disease modeling, and future prospective how single-cell RNA sequencing technology is a major advancement in studying and find the treatment for Parkinson’s disease.


2002 ◽  
Vol 11 (7) ◽  
pp. 653-662 ◽  
Author(s):  
R. M. Love ◽  
R. L. Branton ◽  
J. Karlsson ◽  
P. Brundin ◽  
D. J. Clarke

The effect of pretreating cell suspensions of embryonic rat ventral mesencephala (VM) with antioxidant combinations on the survival of dopaminergic (DA) neurons was studied in vitro and following transplantation into the unilateral 6-hydroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease. The in vitro experiments examined the effects of two thiol antioxidants, N-acetyl-l-cysteine (NAC) and reduced glutathione (GSH), and a member of the lazaroid family of 21-aminosteroids, U-83836E, singly and in combination, on survival of DA neurons derived from dissociated E14 rat VM tissue. For in vivo studies, cell suspensions were pretreated with combinations of NAC, GSH, and U-83836E prior to transplanting into 6-OHDA-lesioned rats to investigate whether DA neuron survival could be further improved. NAC, GSH, and U-83836E individually increased DA neuron survival in vitro and a combination of all three resulted in the greatest survival. In vivo, pretreatment with U-83836E alone resulted in a significantly greater reduction in amphetamine-induced rotation 6 weeks postgrafting compared with a control group receiving nontreated graft tissue. This functional effect correlated with a significant improvement in DA neuron survival 6 weeks postgrafting. The thiol combination pretreatment of NAC and GSH, and the triple combination of NAC, GSH, and U-83836E, however, failed to improve both functional recovery and DA neuron survival when compared with the nontreated control grafts.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


2020 ◽  
pp. 1-14
Author(s):  
Shelby Shrigley ◽  
Fredrik Nilsson ◽  
Bengt Mattsson ◽  
Alessandro Fiorenzano ◽  
Janitha Mudannayake ◽  
...  

Background: Human induced pluripotent stem cells (hiPSCs) have been proposed as an alternative source for cell replacement therapy for Parkinson’s disease (PD) and they provide the option of using the patient’s own cells. A few studies have investigated transplantation of patient-derived dopaminergic (DA) neurons in preclinical models; however, little is known about the long-term integrity and function of grafts derived from patients with PD. Objective: To assess the viability and function of DA neuron grafts derived from a patient hiPSC line with an α-synuclein gene triplication (AST18), using a clinical grade human embryonic stem cell (hESC) line (RC17) as a reference control. Methods: Cells were differentiated into ventral mesencephalic (VM)-patterned DA progenitors using an established GMP protocol. The progenitors were then either terminally differentiated to mature DA neurons in vitro or transplanted into 6-hydroxydopamine (6-OHDA) lesioned rats and their survival, maturation, function, and propensity to develop α-synuclein related pathology, were assessed in vivo. Results: Both cell lines generated functional neurons with DA properties in vitro. AST18-derived VM progenitor cells survived transplantation and matured into neuron-rich grafts similar to the RC17 cells. After 24 weeks, both cell lines produced DA-rich grafts that mediated full functional recovery; however, pathological changes were only observed in grafts derived from the α-synuclein triplication patient line. Conclusion: This data shows proof-of-principle for survival and functional recovery with familial PD patient-derived cells in the 6-OHDA model of PD. However, signs of slowly developing pathology warrants further investigation before use of autologous grafts in patients.


Metabolites ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Petr G. Lokhov ◽  
Dmitry L. Maslov ◽  
Steven Lichtenberg ◽  
Oxana P. Trifonova ◽  
Elena E. Balashova

A laboratory-developed test (LDT) is a type of in vitro diagnostic test that is developed and used within a single laboratory. The holistic metabolomic LDT integrating the currently available data on human metabolic pathways, changes in the concentrations of low-molecular-weight compounds in the human blood during diseases and other conditions, and their prevalent location in the body was developed. That is, the LDT uses all of the accumulated metabolic data relevant for disease diagnosis and high-resolution mass spectrometry with data processing by in-house software. In this study, the LDT was applied to diagnose early-stage Parkinson’s disease (PD), which currently lacks available laboratory tests. The use of the LDT for blood plasma samples confirmed its ability for such diagnostics with 73% accuracy. The diagnosis was based on relevant data, such as the detection of overrepresented metabolite sets associated with PD and other neurodegenerative diseases. Additionally, the ability of the LDT to detect normal composition of low-molecular-weight compounds in blood was demonstrated, thus providing a definition of healthy at the molecular level. This LDT approach as a screening tool can be used for the further widespread testing for other diseases, since ‘omics’ tests, to which the metabolomic LDT belongs, cover a variety of them.


Sign in / Sign up

Export Citation Format

Share Document