scholarly journals Evaluation and Comparative Analysis of Speed Performance of Brushless DC Motor using Digital Controllers

Author(s):  
Kunal Anant Wadhonakar

Abstract: This paper presents modeling, performance evaluation, and comparative analysis of speed performance of brushless DC motor (BLDCM) by using digital controllers. Speed performance analysis is carried out by using time response specifications which are useful for determining the effectiveness of the digital controllers. The wide spread of BLDCM in many areas due to the advantages of BLDCM over the conventional widely used motors such as induction motor and brushed DC motor. Advantages of BLDCM include higher efficiency, lower maintenance, longer life, reduced losses, single excitation, etc. Controllers are used to improve the transient and steady state speed response of the BLDCM. In many applications conventional PID controller is widely used to control the speed of the BLDCM but the main issue with the conventional PID controller is that it requires manual tuning of the parameters such as proportional, integral, and derivative gain constant. Even though the autotuning methods are available with the PID controller it is not adaptive itself to handle the conditions such as variations in parameters, disturbances in load, etc. In this Paper the Fuzzy-PID controller is used to control the speed of the BLDCM and Transient and steady state speed performance analysis is carried out using conventional PID controller and Fuzzy-PID to showcase the comparative analysis between two controllers. MATLAB/SIMULINK environment is used for modeling of the BLDCM and its drive/control system. Keywords: Brushless DC Motor (BLDCM), Fuzzy Logic Controller (FLC), Modeling of BLDC drive/control system, of PID controller, Transient and steady state analysis

Author(s):  
Mohd Syakir Adli ◽  
Noor Hazrin Hany Mohamad Hanif ◽  
Siti Fauziah Toha Tohara

<p>This paper presents a control scheme for speed control system in brushless dc (BLDC) motor to be utilized for electric motorbike. While conventional motorbikes require engine and fuel, electric motorbikes require DC motor and battery pack in order to be powered up. The limitation with battery pack is that it will need to be recharged after a certain period and distance. As the recharging process is time consuming, a PID controller is designed to maintain the speed of the motor at its optimum state, thus ensuring a longer lasting battery time (until the next charge). The controller is designed to track variations of speed references and stabilizes the output speed accordingly. The simulation results conducted in MATLAB/SIMULINK® shows that the motor, equipped with the PID controller was able to track the reference speed in 7.8x10<sup>-2</sup> milliseconds with no overshoot.  The result shows optimistic possibility that the proposed controller can be used to maintain the speed of the motor at its optimum speed.</p>


2013 ◽  
Vol 432 ◽  
pp. 472-477
Author(s):  
Wei Fan ◽  
Tao Chen

This paper presents a robust fuzzy proportional-integral-derivative (PID) controller for brushless DC motor (BLDCM) control system. The hardware circuit of the BLDCM control system is designed and implemented using a digital signal processor (DSP) TMS320LF2407A and a monolithic BLDCM controller MC33035 as the core. Furthermore, a fuzzy PID controller, which combines the advantages of good robustness of fuzzy controller and high precision of conventional PID controller, is employed in the hardware system, thereby yielding a digital, intelligent BLDCM control system. Experimental results have shown that the control system can run steadily and control accurately, and have convincingly demonstrated the usefulness of the proposed fuzzy PID controller in BLDCM control system.


2012 ◽  
Vol 33 ◽  
pp. 1533-1539 ◽  
Author(s):  
Wang Yuanxi ◽  
Yu Yali ◽  
Zhang Guosheng ◽  
Sheng Xiaoliang

2012 ◽  
Vol 246-247 ◽  
pp. 838-841
Author(s):  
Gong She Shi ◽  
Lei Huang ◽  
Wei Hu

The brushless DC motor (BLDCM) non-linear and the complexity of the working conditions are likely to cause the conventional PID servo control performance is not satisfactory. In order to improve the performance of the BLDCM servo control system and PID parameter tuning efficiency, this paper designs an adaptive fuzzy PID controller. Fuzzy logic PID controller parameters Kp, Ki, Kd are adjusted online real time to achieve the effect of optimal control, the BLDCM speed is as to the control object, and in the Matlab of Simulink toolbox simulation is used to achieve speed closed loop of BLDCM. According to comparative analysis of the conventional PID and adaptive fuzzy PID of Dynamic response curve, adaptive Fuzzy PID quick start for brushless DC motors, anti-disturbance has better control effect.


Sign in / Sign up

Export Citation Format

Share Document