scholarly journals Multi-Agent Autonomous Cleaning

Author(s):  
Swaneet D. Rao

Abstract: In today’s world, robots are taking over the world by doing the tasks which used to be done by humans a while ago. Robots are continuously evolving into better and more efficient autonomous agents, makes substantial growth in fields like adaptive artificial intelligence. Our main objective of this people is to create an efficient multi agent autonomous environment for robots for cleaning purposes. Keywords: Gradient Descent, Centralized controller, autonomous agents, LiDAR

2000 ◽  
Vol 15 (2) ◽  
pp. 197-203 ◽  
Author(s):  
RUTH AYLETT ◽  
KERSTIN DAUTENHAHN ◽  
JIM DORAN ◽  
MICHAEL LUCK ◽  
SCOTT MOSS ◽  
...  

One of the main reasons for the sustained activity and interest in the field of agent-based systems, apart from the obvious recognition of its value as a natural and intuitive way of understanding the world, is its reach into very many different and distinct fields of investigation. Indeed, the notions of agents and multi-agent systems are relevant to fields ranging from economics to robotics, in contributing to the foundations of the field, being influenced by ongoing research, and in providing many domains of application. While these various disciplines constitute a rich and diverse environment for agent research, the way in which they may have been linked by it is a much less considered issue. The purpose of this panel was to examine just this concern, in the relationships between different areas that have resulted from agent research. Informed by the experience of the participants in the areas of robotics, social simulation, economics, computer science and artificial intelligence, the discussion was lively and sometimes heated.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 28
Author(s):  
Gabor Paczolay ◽  
Istvan Harmati

<p class="Abstract">Reinforcement learning is currently one of the most researched fields of artificial intelligence. New algorithms are being developed that use neural networks to compute the selected action, especially for deep reinforcement learning. One subcategory of reinforcement learning is multi-agent reinforcement learning, in which multiple agents are present in the world. As it involves the simulation of an environment, it can be applied to robotics as well. In our paper, we use our modified version of the advantage actor–critic (A2C) algorithm, which is suitable for multi-agent scenarios. We test this modified algorithm on our testbed, a cooperative–competitive pursuit–evasion environment, and later we address the problem of collision avoidance.</p>


Author(s):  
Imane Ben

At the start of the simulation, the agent knows nothing about how the dynamics of interaction with the environment unfold, or what causes his sensations. He does not distinguish obstacles from free paths, and he does not know the consequences implied by his actions. Under these conditions, the CALM mechanism was able to converge steadily towards the expected solution, by building a model of the world adequate to represent the regularities of the environment, the regularities of its bodily sensations, as well as to represent the influence regular actions on both. The agent learns about the consequences of his actions in different situations, which are represented by a reduced number of very general diagrams. From them, the mechanism can build an action policy that allows it to avoid affectively negative situations and to seek those that are affectively positive. This solution manages to describe precisely all the regularities that the agent can perceive without building a complete plan of the environment.


Discourse ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 109-117
Author(s):  
O. M. Polyakov

Introduction. The article continues the series of publications on the linguistics of relations (hereinafter R–linguistics) and is devoted to an introduction to the logic of natural language in relation to the approach considered in the series. The problem of natural language logic still remains relevant, since this logic differs significantly from traditional mathematical logic. Moreover, with the appearance of artificial intelligence systems, the importance of this problem only increases. The article analyzes logical problems that prevent the application of classical logic methods to natural languages. This is possible because R-linguistics forms the semantics of a language in the form of world model structures in which language sentences are interpreted.Methodology and sources. The results obtained in the previous parts of the series are used as research tools. To develop the necessary mathematical representations in the field of logic and semantics, the formulated concept of the interpretation operator is used.Results and discussion. The problems that arise when studying the logic of natural language in the framework of R–linguistics are analyzed. These issues are discussed in three aspects: the logical aspect itself; the linguistic aspect; the aspect of correlation with reality. A very General approach to language semantics is considered and semantic axioms of the language are formulated. The problems of the language and its logic related to the most General view of semantics are shown.Conclusion. It is shown that the application of mathematical logic, regardless of its type, to the study of natural language logic faces significant problems. This is a consequence of the inconsistency of existing approaches with the world model. But it is the coherence with the world model that allows us to build a new logical approach. Matching with the model means a semantic approach to logic. Even the most General view of semantics allows to formulate important results about the properties of languages that lack meaning. The simplest examples of semantic interpretation of traditional logic demonstrate its semantic problems (primarily related to negation).


Author(s):  
Mahesh K. Joshi ◽  
J.R. Klein

The world of work has been impacted by technology. Work is different than it was in the past due to digital innovation. Labor market opportunities are becoming polarized between high-end and low-end skilled jobs. Migration and its effects on employment have become a sensitive political issue. From Buffalo to Beijing public debates are raging about the future of work. Developments like artificial intelligence and machine intelligence are contributing to productivity, efficiency, safety, and convenience but are also having an impact on jobs, skills, wages, and the nature of work. The “undiscovered country” of the workplace today is the combination of the changing landscape of work itself and the availability of ill-fitting tools, platforms, and knowledge to train for the requirements, skills, and structure of this new age.


Author(s):  
Mehdi Dastani ◽  
Paolo Torroni ◽  
Neil Yorke-Smith

AbstractThe concept of anormis found widely across fields including artificial intelligence, biology, computer security, cultural studies, economics, law, organizational behaviour and psychology. The concept is studied with different terminology and perspectives, including individual, social, legal and philosophical. If a norm is an expected behaviour in a social setting, then this article considers how it can be determined whether an individual is adhering to this expected behaviour. We call this processmonitoring, and again it is a concept known with different terminology in different fields. Monitoring of norms is foundational for processes of accountability, enforcement, regulation and sanctioning. Starting with a broad focus and narrowing to the multi-agent systems literature, this survey addresses four key questions: what is monitoring, what is monitored, who does the monitoring and how the monitoring is accomplished.


2021 ◽  
Vol 10 (2) ◽  
pp. 27
Author(s):  
Roberto Casadei ◽  
Gianluca Aguzzi ◽  
Mirko Viroli

Research and technology developments on autonomous agents and autonomic computing promote a vision of artificial systems that are able to resiliently manage themselves and autonomously deal with issues at runtime in dynamic environments. Indeed, autonomy can be leveraged to unburden humans from mundane tasks (cf. driving and autonomous vehicles), from the risk of operating in unknown or perilous environments (cf. rescue scenarios), or to support timely decision-making in complex settings (cf. data-centre operations). Beyond the results that individual autonomous agents can carry out, a further opportunity lies in the collaboration of multiple agents or robots. Emerging macro-paradigms provide an approach to programming whole collectives towards global goals. Aggregate computing is one such paradigm, formally grounded in a calculus of computational fields enabling functional composition of collective behaviours that could be proved, under certain technical conditions, to be self-stabilising. In this work, we address the concept of collective autonomy, i.e., the form of autonomy that applies at the level of a group of individuals. As a contribution, we define an agent control architecture for aggregate multi-agent systems, discuss how the aggregate computing framework relates to both individual and collective autonomy, and show how it can be used to program collective autonomous behaviour. We exemplify the concepts through a simulated case study, and outline a research roadmap towards reliable aggregate autonomy.


Work ◽  
2020 ◽  
Vol 67 (3) ◽  
pp. 557-572
Author(s):  
Said Tkatek ◽  
Amine Belmzoukia ◽  
Said Nafai ◽  
Jaafar Abouchabaka ◽  
Youssef Ibnou-ratib

BACKGROUND: To combat COVID-19, curb the pandemic, and manage containment, governments around the world are turning to data collection and population monitoring for analysis and prediction. The massive data generated through the use of big data and artificial intelligence can play an important role in addressing this unprecedented global health and economic crisis. OBJECTIVES: The objective of this work is to develop an expert system that combines several solutions to combat COVID-19. The main solution is based on a new developed software called General Guide (GG) application. This expert system allows us to explore, monitor, forecast, and optimize the data collected in order to take an efficient decision to ensure the safety of citizens, forecast, and slow down the spread’s rate of COVID-19. It will also facilitate countries’ interventions and optimize resources. Moreover, other solutions can be integrated into this expert system, such as the automatic vehicle and passenger sanitizing system equipped with a thermal and smart High Definition (HD) cameras and multi-purpose drones which offer many services. All of these solutions will facilitate lifting COVID-19 restrictions and minimize the impact of this pandemic. METHODS: The methods used in this expert system will assist in designing and analyzing the model based on big data and artificial intelligence (machine learning). This can enhance countries’ abilities and tools in monitoring, combating, and predicting the spread of COVID-19. RESULTS: The results obtained by this prediction process and the use of the above mentioned solutions will help monitor, predict, generate indicators, and make operational decisions to stop the spread of COVID-19. CONCLUSIONS: This developed expert system can assist in stopping the spread of COVID-19 globally and putting the world back to work.


2021 ◽  
Vol 5 (5) ◽  
pp. 23
Author(s):  
Robert Rowe

The history of algorithmic composition using a digital computer has undergone many representations—data structures that encode some aspects of the outside world, or processes and entities within the program itself. Parallel histories in cognitive science and artificial intelligence have (of necessity) confronted their own notions of representations, including the ecological perception view of J.J. Gibson, who claims that mental representations are redundant to the affordances apparent in the world, its objects, and their relations. This review tracks these parallel histories and how the orientations and designs of multimodal interactive systems give rise to their own affordances: the representations and models used expose parameters and controls to a creator that determine how a system can be used and, thus, what it can mean.


Sign in / Sign up

Export Citation Format

Share Document