scholarly journals Experimental Study on Light Weight Concrete Block with Double Core and Double Mesh Using Granulated Corn COB

Author(s):  
Ananda Selvan

Abstract: A light weight concrete block using granulated corncob as an aggregate is investigated in this research work. Considering corn cob after removing the corn is said to be agricultural waste. Finding practical uses of this waste for manufacturing concrete block may preserve the environment and also allow green technologies. These concrete blocks are studied in terms of compressive strength, water absorption; density and unit weight were experimentally studied. The results obtained are submitted which shows that corn cob blocks have sufficient material properties for non-structural application in building for construction of partition walls. This is the alternative for blocks in expanded clay, expanded polystyrene, particles of cork, coconut coir etc. In this research a clay brick is compared as a reference block or control block. Nine specimen blocks were prepared in a size of 400mm x 200mm x 100mm and cured for 7 days, 14 days and 28 days and subjected to compressive strength test, water absorption test and density. The results are compared with conventional clay bricks. Corn cob blocks offered a good strength, low density and less water absorption. Keywords: Agricultural waste, compressive strength, durability, granulated corn

Author(s):  
Muhammad Rizwan

This research work aims to investigate experimentally the mechanical properties of solid concrete blocks as an individual unit and assembly (block masonry) employing different mortar mix ratios. The material properties of the concrete block unit, such as compressive strength and unit weight were explored by taking three samples from the four local factories. The block masonry assemblages were subjected to various load patterns for the evaluation of compressive strength, diagonal tensile strength and shear strength. For the bond, four types of mortars i.e., cement – sand (1:4), cement – sand (1:8), cement – sand – khaka (1:2:2) and cement – sand – khaka (1:4:4) were used in the joints of concrete block masonry assemblages. (Khaka is a by-product formed in the stone crushing process). For each type of mortar, three samples of block masonry were fabricated for compressive strength, shear strength and diagonal tensile strength, and tested in the laboratory. It is observed that the replacement of sand by khaka enhanced the mechanical properties of masonry.


2016 ◽  
Vol 718 ◽  
pp. 177-183 ◽  
Author(s):  
Tanapan Kantasiri ◽  
Pornnapa Kasemsiri ◽  
Uraiwan Pongsa ◽  
Salim Hiziroglu

In this study, the compressive strength, unit weight and chemical structure of light weight concrete (LWC) containing crumb rubber after exposure to high temperature are investigated. The crumb rubber was used as light weight aggregate in place of normal aggregate at the content of 3-15 wt% of LWC. For all mixtures, the water/cement ratio and sand/cement ratio were fixed at 0.5 and 0.2, respectively. The experimental results showed that the unit weight of LWC containing crumb rubber decreased with increasing crumb rubber content. The unit weight and compressive strength values are in range of 1566-1761 kg/m3, 12-29 MPa, respectively. The LWCs containing 3-7 wt% and 15 wt% crumb rubber can meet the requirement of ASTM standards for structural light weight concrete and masonry, respectively. After high temperature exposure, the unit weight loss and compressive strength loss were 25% and 75%, respectively. All specimens still complied with the requirement of ASTM standard for masonry.


The principal reason behind this experimental investigation carried out here is to diminish the dead load of structures with the potential use of light weight bricks. EPS beads and silica fume are light in nature. The investigation work enhanced, with numerous literature study to find out the utilization of Expanded polystyrene(EPS) beads and silica fume in light weight brick can be used in military bases in cold regions due to its low thermal insulating quality. The main objective of this research is to prepare a light weight brick by partial substitution of Cement with silica fume and the replacement of fine aggregate with EPS beads. A total of 70 bricks containing two different sizes of EPS beads say Type A and Type B with different proportions (0%, 7%, 14%, 21%) of each Type were casted in order to check the mechanical properties such as compressive strength, water absorption, efflorescence, workability, and thermal conductivity of the brick. The compressive strength test was carried out at 7, 14 and 28 days of curing. As the percentage of EPS beads in the brick increased the strength of brick decreased while with the increase of EPS beads in the brick the water absorption as well as the thermal conductivity of brick decreased. There were slight presence of Efflorescence in some of the bricks while in most of the brick there were no efflorescence found.


Author(s):  
Muhammad Junaid Iqbal

This research work aims at the development of a material model for concrete block masonry used in the load-bearing wall as well as masonry infill. To accomplish this, various tests were performed on concrete block (solid) units and concrete block masonry assemblage. A concrete block having a size of 12 x 8 x 6 inches, were fabricated in a mortar ratio of 1:4, 1:2:2, 1:8 and 1:4:4. The compressive strength of concrete block prisms having size 24.36 x 8.04 x 18.72 inches, was also determined by conducting the compressive strength test. The shear strength of square prisms, having size 26.76 x 8.04 x 25.20 inches, was found by applying diagonal loading. To investigate the bond shear strength of concrete block masonry, triplet tests were carried out on block masonry prisms. Before conduct, a test on block assemblage specimens, the constituent materials of block assemblage i.e. block and mortar were also tested for different properties. The average compressive strength of concrete block (12”x8”x6”) was 302.25 psi and the average unit weight was 119.83 lb/ft3. The compressive strength of mortars of 1:4, 1:2:2, 1:8 and 1:4:4 was 2367, 1752,815 and 1332 psi respectively.


Author(s):  
Adriane Pczieczek ◽  
Adilson Schackow ◽  
Carmeane Effting ◽  
Itamar Ribeiro Gomes ◽  
Talita Flores Dias

This study aims to evaluate the application of discarded tire rubber waste and Expanded Polystyrene (EPS) in mortar. For mortars fine aggregate was replaced by 10%, 20% and 30% of rubber and, 7.5% and 15% of EPS. We have verified the consistency, density, amount of air and water retentitivity in fresh state. The compressive strength, water absorption, voids ratio and specific gravity have been also tested in hardened state. The application of rubber powder contributed to the increase in entrained air content and in reducing specific gravity, as well as reducing compressive strength at 28 days. The addition of EPS also contributed to the increase of workability, water absorption and voids ratio, and decreased density and compressive strength when compared to the reference mortar. The use of rubber waste and EPS in mortar made the material more lightweight and workable. The mortars mixtures containing 10% rubber and 7.5% EPS showed better results.


2019 ◽  
Vol 801 ◽  
pp. 365-370
Author(s):  
Vivek Sood ◽  
S.K. Negi ◽  
B.M. Suman

In the present study, use of marble dust an inert filler produced by the marble cutting industries in the development of light weight block (LWB) of density 800 kg/m3 by non-auto clave method has been studied. Various mechanical and thermo-physical properties have been evaluated. It has been possible to replace cement by up to 20% when no additive is used. With the use of activator and super plasticizer at 50% replacement of cement by marble dust, compressive strength and water absorption are well within the Indian standard code 2185. With the use of accelerator and super plasticizer it is possible to reduce the de moulding time from 48 hrs to 6 hrs. Thermal conductivity of blocks varies from 1.16 to 2.30 [W/mK]. The variation in thermal conductivity depends upon its density which varies from 800 kg/m3 to 2400 kg/m3.


2019 ◽  
Vol 280 ◽  
pp. 04002
Author(s):  
Setya Winarno

This research presents a comparative cost and strength analysis of rice husk concrete block which is aimed at reducing the cost of concrete production and emphasizing environmentally and friendly sustainable materials. Concrete block materials consist of cement, filler, and rice husk. Tests were performed to compare the strength and cost of seven cement rice husk weight ratios designated ranging from 0.67 to 2.00 with constant water cement ration of 0.4. Samples have been tested for 28-day strength. The analysis of the results has showed that the higher proportions of rice husk correspond to decreased strength dan cost polynomially. At 134% proportion of rice husk, it is optimum value for rice husk concrete block. In this point, the compressive strength satisfies the standard. Also, water absorption of 16,04% justifies the maximum standard. Overall, the cost of 134% RH concrete is Rp 511,809 per m3 which is 42.5% cheaper than normal concrete block.


Sign in / Sign up

Export Citation Format

Share Document