Investigation on the Effect of Infilled Walls Utilizing Response Spectrum Analysis for Steel Staggered-Truss System

2012 ◽  
Vol 152-154 ◽  
pp. 34-39
Author(s):  
Qing Sheng Guo ◽  
Qing Shan Yang

Considering the structure type of the steel staggered-truss (SST) system, the effect of infilled walls will be major and need to be studied amply, some scientific design regulations need to be found for referrence. Based on two different 3D models considering or ignoring the stiffness of infilled walls (SIW), a numerical investigation is presented on the structural behaviors of the SST system utilizing the finite element 3D simulation analysis soft ware ETABS. The longitudinal structure is asymmetrical due to the SIW, it causes the torsion forces in the building. Comparing to the different results of response spectrum analysis, including storey drift and equivalent base shear under frequent earth quake and rare earth quake, some conclusions were made, including the capacity of the SST system under seismic load and the effect of the SIW for SST system. The increased base shear force factors due to the effect of the SIW were suggested for SST structure design, it is different from the other steel structure types.

Author(s):  
Akshay Gajbhiye

Abstract : In modern multistorey building construction, irregularities like the soft storey, vertical and plan irregularities, floating columns etc are very common. Building with an open ground storey for parking is a common feature that results in floating columns. Floating columns provide column free space and a good aesthetic architectural view of the building. floating column means the end of any vertical element that rests on the beam which leads to discontinuity of columns such that the path of load distribution in multi-storey buildings is disturbed. The use of a floating column also tends to increase the moment in the column, storey shear etc which highly undesirable in seismically active areas. So, the study of the best location where the floating column needs to be provided to reduce the impact due to seismic loads is of primordial importance. Shear wall is a vertical member which is provided from foundation to top storey. In this study shear wall is used in the direction of orientation so that it provides additional strength and stiffness to the buildings. In the present analysis, 8 models are studied. The first model considers a multi-storeyed building without any shear wall and floating column. Other models analysed are with shear wall and by varying the location of floating columns. The analysis and design are done by STAAD.pro V8i SS6 version software and the method used is response spectrum analysis in earthquake zone 4. The effect of floating column location on parameters such as Base shear, Displacement, Maximum moment, storey shear and percentage of steel reinforcement are discussed. The comparison of results of different models is also carried out in detail using graphs and bar charts in this study. The suitable location for providing a floating column with the shear wall is also discussed. Keywords: Floating column, Shear wall, Seismic load, STAAD.pro.v8i, Response Spectrum Analysis.


2019 ◽  
Vol 14 (2) ◽  
Author(s):  
Masnawari Rahmadani ◽  
Ririt Aprillin ◽  
Eka Murtinugraha

The building model was made by using ETABS’s software version 9.7.1. Method that was used for earthquake analysis was response spectrum analysis. Result of this research showed that application of two columns dilatation produced different structure behavior when it applied on lengthways direction (X) and breadthways direction (Y) of existing building. Dilatation variation that was given on lengthways direction (X) of building produced better behaviors. More regular building form because of dilatation on lengthways direction (X) produced shorter period with bigger base shear. Along with the base shear that accepted by building, the column momen also became bigger. Based on displacement that was produced, application of dilatation on lengthways direction was influenced by re-entrant corner. Configuration of more regular building that has close re-entrant corner to existing building condition produced displacement that close to the existing, that thing was also in line with story drift that was produced. The displacement that was produced by all dilatation variation was still in safe category according to SNI 03-1726-2012. The biggest displacement that happened on X and Y direction was produced by variation 1 as big as 0.824m and 0.817m in a row.


Author(s):  
Varun Mahajan

Abstract: Architects nowadays develop attractive edifices, and floating columns are widely employed in this process. Floating columns are used not only to provide a magnificent perspective but also when a vast open area is necessary. Edifices with irregular configurations are more vulnerable to earthquakes and hence, suitable shear wall placement is required to ensure the edifice's stability. Many multi-storey edifices collapsed in seconds after the Bhuj Earthquake (Jan 26, 2001), due to the presence of soft stories, floating columns, and mass anomalies. As a result, knowing the seismic reactions of these buildings are vital for constructing earthquake-resistant assemblies. The relevance of a Floating Column and the existence of a shear wall in an irregular multistorey building is highlighted in this study. Dynamic seismic behaviour of a G+18 irregular edifice with different locations of the floating column and different positions of the shear wall is explored in this research. The edifice is analysed and compared with the model without shear walls and floating columns to examine the alterations. The dynamic analysis is carried out using Response Spectrum Analysis and storey drift, storey displacement and base shear are calculated and finally, software compression is computed for different zones. The analysis is carried out by Indian standardized codes IS 1893:2016 and IS 456:2000 which are the codes specified by the Bureau of Indian Standards for earthquake resistance edifice design and plain and reinforcement concrete design respectively. Keywords: Floating Column, Shear Wall, Irregular Edifice, Seismic behaviour, Response Spectrum Analysis, storey drift, storey displacement, base shear.


2011 ◽  
Vol 22 (16) ◽  
pp. 1913-1927 ◽  
Author(s):  
Sang-Hyun Lee ◽  
Kyung-Jo Youn ◽  
Kyung-Won Min

In this study, a decentralized algorithm for operating a semiactive MR damper was presented. The frictional force of the MR damper was determined based on the assumed shape functions using the displacement and velocity of the damper piston itself. The seismic response control performance of the MR damper was numerically and experimentally evaluated and compared to that of the passively or semiactively operated MR damper. The results from numerical analysis of SDOF system indicated that passively operated MR damper to have an optimal frictional force less than about 30% of the base shear force provided the smallest displacement response spectrum over all the periods. The proposed MR damper showed the better performance in reducing the absolute acceleration with the larger frictional force than the passive one. Also, the results from a three-storey benchmark building indicated that the proposed decentralized MR damper provided control performance equivalent to or better than the performance shown by the semiactive MR damper using a centralized LQR algorithm. Finally, the effectiveness of the proposed MR damper was verified through experimental tests of a full-scale five-storey steel structure with the MR dampers.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Mazhar Fatahi ◽  
Mahdi Meftah Halghi ◽  
Mehran Soltani Tehrani

This study aimed to examine the effect of rigid and flexible foundations on the response by a semiburied water storage reservoir. In this study, the reservoir support conditions of both flexible and inflexible states were studied. The seismic behaviour of reinforced and prestressed concrete reservoirs was compared based on their support conditions. The powerful numerical method FEM was used to study about the nonlinear behaviour of cylindrical reservoirs using static and dynamic nonlinear analysis. The values of the results correcting factor in the design codes and standards were evaluated. Moreover, the response correcting behaviour (R) was evaluated based on the findings from a push-over and nonlinear dynamic analysis. This research finding indicated that the reservoir shapes and support types affect the deformability of the reservoirs. Reservoirs with prestressed concrete show less flexibility compared to reinforced concrete reservoir. Finally, it is resulted that displacement, base shear, and wave height obtained from time history analysis are more than those of response spectrum analysis, indicating insufficiency of response spectrum analysis.


2015 ◽  
Vol 1 (1) ◽  
pp. 17
Author(s):  
Almufid Almufid

Structural analysis is planned phases of a building, especially the high buildings. In the analysis of the structure required to facilitate the modeling calculations reflect actual conditions in the field, both in structure and in the loaded . Because almost all parts of Indonesia, including the earthquake-prone areas is a challenge for civil engineering planning in order to design earthquakeresistant buildings. Indonesia has many experienced tremendous earthquake  Writing this proposal is intended to be able to know the strength and structure of the response Strength multi degree of freedome, on soft ground, located in Tangerang when worn earthquake lateral loads, analysis is done with the help of the SAP program in 2000 ver.15, to get the style - the style such as: the base shear force, lateral force level, rolling moment and lateral deviation. Dynamic analysis was conducted using the response spectrum analysis, mass modeling performed with a lump mass models, the sum of the response variance is reviewed with some combinations, such as: CQC, SRSs and  ABSSUM. Keywords: Building Multi Degrre of Freedome, response spectrum analysis, dynamic loads, with the use of the method;   CQC,    SRSS, ABSSUM


Author(s):  
Vedant Kale

Abstract: The Indian Standard code IS-1893: 2002 (Part-I) defines various types of structural irregularities. The code suggests a special approach of study for irregular structures. The earthquake effect leads to the damage the property and many people loss their life. So, we've to understand the structural performance under seismic load before construction. In this study varying plan irregularities which are often inevitable thanks to building requirements and architectural imperatives, and having a serious impact on building costs are investigated. The objective of the project is to carry out Response spectrum analysis of two RCC buildings is to be done in four different seismic zones of India (i.e., Zone-2, Zone-3, Zone-4, Zone-5). ETABS model of G+10 RCC with Varying Geometry plan is considered in this analysis. The analysis is done using Extended Three-Dimensional Analysis of Building System software. Various response parameters like lateral force, story drift, Displacement are often determined. The evaluation of response of structures subjected to lateral loading with the help of frequency and the magnitude of stress resultant, is also included in the scope of this paper. Keywords: Plan irregularity, Vertical geometric irregularities Response spectrum method, ETABS, Structural Irregularities, Lateral Loading, Non-Linear Analysis, Storey Drift, Storey Displacement.


2021 ◽  
Vol 17 (3-4) ◽  
pp. 89-100
Author(s):  
M. Davidson ◽  
A. Patil ◽  
S.A. Rosenfeld ◽  
Z. Zhu

Frequency-based analysis techniques such as response spectrum analysis (RSA) are widely used for designing bridges in seismically active regions. Two well-known analysis procedures that underlie RSA are the solution of the eigenproblem and the approximation of the solution to the eigenproblem (i.e., approximation of eigenvectors and eigenvalues) through use of force-dependent Ritz vectors. While frequency-based methods have achieved widespread adoption in practice, certain simplifications remain common, such as neglecting soil-structure interaction (SSI) due to a fixed-base assumption. In the present study, frequency-based techniques packaged within a research version of a design-oriented computational tool are employed to analyze, assess, and compare results obtained from RSA with use of the eigenanalysis, and separately, Ritz vector approaches. Importantly, for the bridge configurations analyzed, SSI is taken into account. As outcomes, the potential benefits of the Ritz vector approach (as well as modeling strategies) are demonstrated. The study outcomes are intended to aid practicing engineers when the need to account for SSI is recognized as pertinent to a given bridge seismic design application.


Sign in / Sign up

Export Citation Format

Share Document