scholarly journals Selection of 3D Printer for Innovation Centre of Academic Institution Based on AHP and TOPSIS Methods

Author(s):  
R. D. Rakhade

Abstract: This paper describes a computer-based tool for the selection of 3D printer for educational propose by using Multi Attribute Decision Making (MADM) strategies particularly Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). In education, 3D printing technologies facilitate improved learning, skills development, and increased student and teacher engagement with the subject matter. Furthermore, 3D printing sparks greater creativity and collaboration in solving problems, to settle on a best option for teaching learning process tasks into account. MADM methods are interpretative processes which are well suited in choice of different 3D printers. This work suggests AHP and TOPSIS to judge 3D printer alternatives for choice of method, based on the AHP and TOPSIS methodology, ranks available techniques by a score resulting from the composition of priorities at different levels, each considering homogeneous and independent evaluation criteria. In this work proposes a comprehensive list of key factors that have a significant influence on 3D printer selection. In this work type of material used for printing considered as common for all printers such as ABS (Acrylonitrile Butadiene Styrene), PLA (Polylactic Acid), PET or Polyethylene terephthalate etc. A total of 09 sub-criteria have been identified and grouped under three main criteria, namely, (i) Physical Characteristics (ii) Economic consideration, (iii) Operational Requirements. These entire criteria area unit extracted from on-line literature and skilled opinion. Result of study shows that 3D Printer one (ET4 PRO 3IDEA model) was designated because the best suited for Innovation Centre Academic Institution. Keywords: 3D printer, MADM method, AHP method, TOPSIS method, Innovation Centre, Academic Institution

2013 ◽  
Vol 860-863 ◽  
pp. 280-286 ◽  
Author(s):  
Xiang Feng Zhang

Wind is one of the most promising sources of alternative energy. The construction of wind farms grows quickly in China. It is necessary for stakeholders to estimate investment costs and make good decisions on a wind power project by making a budget for the investment. However, the identification of rational investment practices is technically challenging because of the lack of scientific tools to evaluate optimal decisions. A multi-criteria evaluation method was proposed to select rational investment strategy for wind farm construction. The method is based on the analytic hierarchy process (AHP) together with a technique for order preference by similarity to ideal solution (TOPSIS). A decision problem hierarchy with three layers were investigated. The top layer is an objective layer for evaluating the investment rationality. The intermediate layer includes three evaluation criteria, that is, configuration of wind turbine generator systems, physical environment and social environment. Some relative and important indicators for each criterion are in the low layer. The evaluation results illustrate that the proposed method is practical and helpful to indentify the investment rationality for wind farms.


Author(s):  
Seyed Allameh

Bioinspired materials have enabled the fabrication of tough lightweight structures for load- and impact-bearing applications of which an example is fiber-reinforced plastics use in aerospace. If applied to the field of construction, biomimicked composites can save lives, otherwise lost to earthquakes and other disasters that cause collapse of buildings. The main culprit is the low resistance of structures exposed to dynamic shear stresses, typical of earthquakes. Recent work on the application of biomimicry to structural composites has clearly shown the advantage of these materials in resisting dynamic shear. Adding natural or synthetic reinforcement fibers may alleviate the need for conventional steel rebars and make it possible to print buildings by conventional 3D printing technology. The main hurdles are to find the right type of composite that is compatible with 3D printing and the right process for deposition of such material. In the past, combination of carbon fiber, glue and concrete has been demonstrated to enhance the toughness of resulting structural composites. Inspired by the microstructure of oyster and mother of pearl, layering of these materials mitigates the localization of deformation by distributing the imposed displacement over a large area. The intricate structure of these layers, and the minute details of the interfaces are important for affecting good dynamic shear resistance. In nacre, a partial slip of sandwiched layers occurs before it stops and deformation is transferred to the adjacent area. This energy-absorption capability underlies the high-toughness behavior of nacre and similar structures. By mimicking nacre, bone and tooth, it is possible to benefit from their good properties, however, it is important to determine the type of material, layering scheme, geometry, and other factors that affect mechanical properties. A recently-developed medium-sized 3D printer was developed to deposit structural materials. These include cement, plaster, polymer and clay. Combinatorial structural composite research (CSCR) comprising the simultaneous fabrication and characterization of multiple specimens with different microstructures allows fair comparison of mechanical properties of various structural composites. Novel application of deposition techniques to the extrusion of plaster, cement and clay paves the way to layer these materials along with glue and fibers in desired schemes. Use of ANOVA tables in the selection of various types of ceramics, polymers and reinforcement materials for the fabrication of different composites will be discussed. In addition to selection of the type of the materials, deposition schemes such as those of solid and hollow structures, different layer thickness applications, and the effect of timing will be elucidated. Microscopy conducted on the fractured surfaces enables the investigation of the mechanisms of fracture and failure for these CSCR composites. The details of experiments conducted, microscopy performed and the results of mechanical tests will be presented.


Author(s):  
M. Ilangkumaran ◽  
S. Kumanan

This paper focuses on the use of Fuzzy Analytic Hierarchy Process (FAHP) and VlseKriterijumska Optimizacija I Kompromisno Resenje in Serbian (VIKOR) to select an optimum maintenance strategy for a textile industry. In the proposed methodology, first the weight of each criterion is calculated by using improved AHP with fuzzy set theory to overcome the problems of unbalanced scale of judgments, uncertainty and imprecision in the pair-wise comparison process and then the VIKOR method is applied to compensate the imprecise ranking of the AHP in the selection of maintenance strategy. The real case study is conducted for a textile industry to illustrate the utilization of the proposed model for the maintenance strategy selection problem. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is applied to make sure that the result of the proposed model can be acceptable. A sensitivity analysis is also conducted to show the validity of the proposed model. The paper gives an insight into multi criteria decision-making (MCDM) techniques to select an optimum maintenance strategy for a process industry using a case study.


2019 ◽  
Vol 4 (1) ◽  
pp. 46-57
Author(s):  
Sharba Muammel M Hanon ◽  
M. Kovács ◽  
László Zsidai

Additive and subtractive manufacturing of Acrylonitrile Butadiene Styrene (ABS) were employed for fabricating samples. The Additive manufacturing was represented through 3D printing, whereas subtractive manufacturing carried out by Turning. Some developments have been applied for enhancing the performance of the 3D printer. Tribological measurements of the turned and 3D printed specimens have been achieved. Studying the difference between static and dynamic friction factors and the examination of wear values were included. A comparison of the tribological behaviour of the turned and 3D printed ABS polymer has been investigated.


Author(s):  
Jarosław Tatarczak

This work presents measurement results of pollutants generated during 3D printing. The measure of pollutants is the concentration of particulate matter with a diameter of up to 2.5 μm (PM2,5). Materials acrylonitrile-butadiene-styrene (ABS), polyactide (PLA) for a 3D printer and low-cost particulate matter concentration sensors PMS3003, PMS7003 were used in the research. Research results show that  low-cost sensors can be useful for monitoring pollution during 3D printing in offices, laboratories or private homes.


2020 ◽  
Author(s):  
Webby Banda

Mineral taxation is an important revenue-generating instrument for the Zambian government. A good combination of tax instruments in a fiscal regime will help a mineral resource-rich country to generate revenue needed for economic development. This paper selects Zambia’s optimal copper mining excess profit tax. The choice was made between variable profit tax and windfall tax. This was attained by using the fuzzy analytic hierarchy process (AHP) and fuzzy technique order of preference by similarity to ideal solution (TOPSIS) methods. The selection process was anchored on four evaluation criteria: administrative efficiency, investor risk, government risk, and progressivity. Results show that windfall tax is technically superior to variable profit tax. Therefore, windfall tax was selected as Zambia’s optimal copper mining excess profit tax.


Author(s):  
Sait Gul ◽  
Ilker Topcu

<p>People who wish to travel or participate in a touristic activity often do not have certain information about available travel destinations, group tours, and touristic events. Furthermore, they have their own personal expectations and preferences, especially regarding time and budget limitations. Therefore, they do not want to spend their limited time collecting information about travelling instead of actually travelling. Besides, the individualistic dimensions of tourism planning and marketing studies have a significant importance on national economies all over the world, particularly for nations whose tourism income is becoming a bigger share of their total national income. This study aims to develop a touristic suggestion model for tourist candidates with regards to their personal expectations and preferences about tourism. The Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution TOPSIS multi-attribute decision-making methods are used in this study to analyze the problem. The proposed model was built in three main phases: structuring, modeling and analyzing. The AHP method was used for prioritizing the related criteria obtained from the tourist candidates, and then TOPSIS was used for assessing global preference of alternatives. Finally, a recommendation to the decision maker is made with the most appropriate alternative.</p>


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6553
Author(s):  
Elżbieta Janowska-Renkas ◽  
Przemysław Jakiel ◽  
Dariusz Fabianowski ◽  
Damian Matyjaszczyk

The selection of material solutions is a basic decision-making problem that occurs in engineering issues. It affects the entire life cycle of a building structure, its safe use, maintenance costs, and a need to meet requirements for sustainable development, including recycling. This paper aims at selection of the optimum composition of HPC designed for monolithic girder structures of post-tension bridges. For the analysis, a set of 12 new-generation concretes (HPC) was designed, made, and tested. A full-scope set of evaluation criteria was created and then the optimal alternative was selected. For this purpose, an advanced hybrid algorithm combining EA FAHP (Extent Analysis Fuzzy Analytic Hierarchy Process) and FuzzyTOPSIS (Fuzzy Technique for Order Preference by Similarity to an Ideal Solution) methods was used. The obtained results indicate a possibility for the practical application of the proposed algorithm by decision-making engineering staff. It can also be the basis for further research on application compared to other material and design solutions and, depending on the issue, different combination of aggregated methods.


Author(s):  
Baocheng Xie ◽  
Xuhui Ji

Background: Photocuring 3D printing is a highly efficient additive manufacturing technology for machining complex object geometries. Resin container, a core component of photocuring 3D printer, plays a significant role in solving the problems about resin supply, temperature control, peeling method and membrane pressure during the curing process. Thus, the resin container has been paid more and more attention to optimize the curing process Objective: To offer some new designs of resin container which contribute to solve problems about resin supply, temperature control, peeling method and membrane pressure. Provide the reader with a new idea that the function of resin containers cannot be ignored during 3d printing. Moreover, stimulate the reader's thoughts about how can designs of resin containers be further improved Methods: This paper sketches out the strengths and weaknesses of these designs of resin containers with a more critical eye. And show their similarities and differences in a more concise form. Results: The strengths and weaknesses of these designs of resin containers in photocuring 3D printing are summarized. There is no doubt that a suitable resin container contributes to solve the problems about resin supply, temperature control, peeling method and membrane pressure. It helps to stimulate the reader's thoughts on the selection of resin containers for printing optimization Conclusion: Researchers should pay more attention to the new designs of resin containers which are easy to be ignored but have great significance. Some new resin containers will be invented to solve problems about resin supply, temperature control, peeling method and membrane pressure during the curing process


Sign in / Sign up

Export Citation Format

Share Document