scholarly journals COMBINED SYSTEM CONTROLLER WITH AN IMPLICIT REFERENCE FOR OUTPUT CON-TROL OF A STRUCTURALLY INDETERMINATE NON-AFFINE PLANT WITH AN UN-KNOWN STATE DELAY

2020 ◽  
pp. 118-128
Author(s):  
E.L. Eremin ◽  
◽  
L.V. Nikiforova ◽  
E.A. Shelenok ◽  
◽  
...  

We study the problem of controlling the output of a non-affine plant with a state delay, the mathemati-cal model of which is structurally and parametrically a priori uncertain. Within the framework of ap-plying the hyperstability criterion and L-dissipativity conditions, as well as using an implicit reference model and filter correctors in the control system, we consider the use of a combined controller with minimal structural complexity, but ensuring the achievement of the set control goal in a given class of non-affine objects with an unknown state delay.

Author(s):  
E.L. Eremin ◽  
◽  
L.V. Nikiforova ◽  
E.A. Shelenok ◽  
◽  
...  

The paper proposes a solution to the problem of synthesizing a multi-coupled combined control system for a non-affine plant with a delay in the input variable with gradually changing dynamics. The plant functions under conditions of a priori parametric and structural uncertainties in the presence of external interference when only the regulated variable is measured. The structure of a multiconnected control system includes an implicit reference model, a preceding-compensator and filter-correctors.


2021 ◽  
Vol 22 (3) ◽  
pp. 134-144
Author(s):  
V. F. Filaretov ◽  
D. A. Yukhimets

Currently, autonomous underwater vehicles (AUV) are increasingly used to perform tasks related to the maintenance of underwater communications and various underwater production complexes, as well as performing underwater technological operations. To effectively perform these operations, AUV must have high-quality control systems that will ensure their accurate movement both along long spatial trajectories formed during their movement to the objects of work, and when performing complex maneuvers near underwater infrastructure objects. At the same time, the main difficulty that arises in the process of synthesis of AUV control systems is the significant non-linearity of the dynamic models of these control objects, the presence of interactions between their degrees of freedom, as well as the uncertainty and variability of their parameters. In this paper, we propose a method for synthesizing the spatial motion control system of the AUV, which allows us to take into account these negative effects. This system contains two loops. The first loop includes a combined system containing a nonlinear controller to achieve the desired dynamic characteristics of the AUV, when its parameters are equal to the nominal values, and a controller with self-tuning according to the reference model, which provides compensation for an unknown or variable part of the parameters. In this case, the parameters of the controller with the reference model are selected to reduce the possible amplitude of the discontinuous signal for controlling the AUV velocity. The second loop is a non-linear position controller that allows to take into account the dynamic properties of the velocity control loop and the kinematic properties of the AUV. The advantage of the proposed control system in comparison with traditional ones based on PID controllers is a higher control accuracy when moving along complex spatial trajectories, regardless of changes in the AUV parameters. The simulation results confirmed the high efficiency of the synthesized two-loop control system.


2011 ◽  
Vol 383-390 ◽  
pp. 79-85
Author(s):  
Dong Yuan ◽  
Xiao Jun Ma ◽  
Wei Wei

Aiming at the problems such as switch impulsion, insurmountability for influence caused by nonlinearity in one tank gun control system which adopts double PID controller to realize the multimode switch control between high speed and low speed movement, the system math model is built up; And then, Model Reference Adaptive Control (MRAC) method based on nonroutine reference model is brought in and the adaptive gun controller is designed. Consequently, the compensation of nonlinearity and multimode control are implemented. Furthermore, the Tracking Differentiator (TD) is affiliated to the front of controller in order to restrain the impulsion caused by mode switch. Finally, the validity of control method in this paper is verified by simulation.


Author(s):  
Chris Sharp ◽  
Bryony DuPont

Currently, ocean wave energy is a novel means of electricity generation that is projected to potentially serve as a primary energy source in coastal areas. However, for wave energy converters (WECs) to be applicable on a scale that allows for grid implementation, these devices will need to be placed in close relative proximity to each other. From what’s been learned in the wind industry of the U.S., the placement of these devices will require optimization considering both cost and power. However, current research regarding optimized WEC layouts only considers the power produced. This work explores the development of a genetic algorithm (GA) that will create optimized WEC layouts where the objective function considers both the economics involved in the array’s development as well as the power generated. The WEC optimization algorithm enables the user to either constrain the number of WECs to be included in the array, or allow the algorithm to define this number. To calculate the objective function, potential arrays are evaluated using cost information from Sandia National Labs Reference Model Project, and power development is calculated such that WEC interaction affects are considered. Results are presented for multiple test scenarios and are compared to previous literature, and the implications of a priori system optimization for offshore renewables are discussed.


Author(s):  
Vitaly Vysotsky ◽  
◽  
Igor Markov ◽  
Yuri Matveev ◽  
◽  
...  

The article deals with the main trends in the development of marine automatic AC electric drive systems. A variant of the implementation of an electric drive using an electromechanical converter of a synchronous machine with electromagnetic field excitation is presented. A promising electric drive system with a valve engine for the icebreaker's with the Azipod propulsion and steering system is proposed. The aim of the work is to eliminate the structural complexity and expand the functional capabilities of the electric drive by using a scalar automatic control system of the frequency of rotation in the two-zone control of the valve motor of the EPS. The novelty lies in the use of the approach and representation of the control object-a valve motor as an analog of a DC collector motor controlled by an armature and by a field. The analysis of control processes is directly related to the processes of electromechanical energy conversion occurring in a synchronous machine.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Tianqian Xia ◽  
Xianghua Huang

Abstract A method of variable speed control system for turboprop engine is presented in this paper. Firstly, the steady operation state of turboprop engine is analyzed, and the operating line is figured out in the steady state characteristic diagram, which is the design basis of Engine Thrust Management System (ETMS). Secondly, the reference model sliding mode multivariable control is used to design the control law to follow the speed instructions given by ETMS. Finally, the optimization of the minimum fuel consumption operating curve is realized, and the control system designed is applied to a numerical model of a turboprop engine. The simulation results show that compared with the constant speed control system, the variable speed control system can reduce the specific fuel consumption by 2.37 % on average and 3.1 % in steady state conditions. Furthermore, the method can enable the pilot to manipulate the turboprop aircraft by using only one throttle lever, which can greatly reduce the pilot operation burden.


A fundamental diagram of a control system for missiles of various classes is investigated. A functional diagram of a control system with an intelligent component for long-range aerodynamic rockets returning to the atmosphere is developed. It is proposed to use in the control loop an ensemble of a priori missile models and models of external influences. It is proposed to improve the accuracy of control systems with an intelligent component by increasing the degree of controllability of the state variables for a priori models. The most convenient numerical criterion of controllability degree for of the state variables of the models is presented. The results of mathematical modeling showed a slight increase in the efficiency of missile control with an increase in the degree of controllability of the pitch angle by changing the coefficients of the control matrix. Keywords rocket; control system; intelligent component; an action acceptor; a priori model; controllability; degree of controllability; management efficiency


Author(s):  
Sunan Huang ◽  
Kok Kiong Tan ◽  
Tong Heng Lee

Due to harsh working environment, control systems may degrade to an unacceptable level, causing more regular fault occurrences. In this case, it is necessary to provide the fault-tolerant control for operating the system continuously. The existing control techniques have given some ways to solve this problem, but if the system behaves in an unanticipated manner, then the control system may need to be modified, so that it handles the modified system. In this chapter, the authors are concerned with how this control system can be done automatically, and when it can be done successfully. They aimed in this work at handling unanticipated failure modes, for which solutions have not been solved completely. The model-based fault-tolerant controller with a self-detecting algorithm is proposed. Here, the radial basis function neural network is used in the controller to estimate the unknown failures. Once the failure is detected, the re-configured control is activated and then maintains the system continously. The fault-tolerant control is illustrated in two cases. It is shown that the proposed method can cope with different failure modes which are unknown a priori. The result indicates that the solution is suitable for a class of mechanical systems whose dynamics are subject to sudden changes resulting from component failures when working in a harsh environment.


Sign in / Sign up

Export Citation Format

Share Document