An Analysis of the Relation between Observation and Reasoning in High School Students’ Conic Section Drawers Problem Solving

2021 ◽  
Vol 21 (10) ◽  
pp. 837-852
Author(s):  
Hyunju Lee
Author(s):  
J. Navaneetha Krishnan ◽  
P. Paul Devanesan

The major aim of teaching Mathematics is to develop problem solving skill among the students. This article aims to find out the problem solving strategies and to test the students’ ability in using these strategies to solve problems. Using sample survey method, four hundred students were taken for this investigation. Students’ achievement in solving problems was tested for their Identification and Application of Problem Solving Strategies as a major finding, thirty one percent of the students’ achievement in mathematics is contributed by Identification and Application of Problem Solving Strategies.


Author(s):  
Pawan Tyagi ◽  
Christine Newman

Preparing high school students for engineering disciplines is crucial for sustainable scientific and technological developments in the USA. This paper discusses a pre-college program, which not only exposes students to various engineering disciplines but also enables them to consider engineering as the profession. The four-week long “Engineering Innovation (EI)” course is offered every year to high school students by the center of outreach, Johns Hopkins University. EI program is designed to develop problem-solving skills through extensive hands-on engineering experiments. A team consisting of an instructor, generally a PhD in Engineering, and a teaching fellow, generally a high school science teacher, closely work with students to pedagogically inculcate basics of core engineering disciplines such as civil, mechanical, electrical, materials, and chemical engineering. EI values independent problem-solving skills and simultaneously promote the team spirit among students. A number of crucial engineering aspects such as professional ethics, communications, technical writing, and understanding of common engineering principles are inculcated among high school students via well-designed individual and group activities. This paper discusses the model of EI program and its impact on students learning and their preparation for the engineering career.


2021 ◽  
Vol 2 (1) ◽  
pp. 42-53
Author(s):  
Dyah Ayu Setyarini ◽  
Zainal Arifin Imam Supardi ◽  
Elok Sudibyo

This research aims to improve senior high school students’ physics problem-solving skills through learning used IBMR learning model. This research was a pre-an experimental study with a one-group pre-test and post-test design. The Methods of data collection used validation and test. The materials used to teach were valid category by two experts and can be used to practice physics problem-solving skills. The average post-test score physics problem-solving ability was 73.24 with an N-gain of 0.59 was classified as moderate. The success of IBMR learning model-based devices in practicing problem-solving abilities can be seen in the increase in the average score in each indicator of problem-solving abilities. The indicator of understanding the problem had the highest post-test average score of 94.58 with an N-gain of 0.89 in the high category. The problem-solving indicator had the lowest posttest average score was 58.22 with N-gain 0.39 and mean that it was the moderate category. Based on the results study, it can be concluded that the learning used by IBMR learning model can practice the ability to solve physics problems on heat material and its displacement. Learning with the IBMR learning model was expected to train students in solving physics problems. The stages in the IBMR learning model can help students


Sign in / Sign up

Export Citation Format

Share Document