scholarly journals Total Dissolved Solids in Water as a Function of Growing Percent Impervious Surface Cover in the Watershed Suggest Pitfalls in Growth of Infrastructure

Cities ◽  
2014 ◽  
Vol 39 ◽  
pp. 21-36 ◽  
Author(s):  
AmirReza Shahtahmassebi ◽  
Yi Pan ◽  
Lin Lin ◽  
Ashton Shortridge ◽  
Ke Wang ◽  
...  

2009 ◽  
Vol 14 (4) ◽  
pp. 362-368 ◽  
Author(s):  
David M. Theobald ◽  
Scott J. Goetz ◽  
John B. Norman ◽  
Patrick Jantz

2019 ◽  
Vol 11 (24) ◽  
pp. 2965
Author(s):  
Cheng Fu ◽  
Xiao-Peng Song ◽  
Kathleen Stewart

The land use structure is a key component to understand the complexity of urban systems because it provides a snapshot of urban dynamics and how people use space. This paper integrates socially sensed activity data with a remotely sensed land cover product in order to infer urban land use and its changes over time. We conducted a case study in the Washington D.C.–Baltimore metropolitan area to identify the pattern of land use change from undeveloped to developed land, including residential and non-residential uses for a period covering 1986–2008. The proposed approach modeled physical and behavioral features of land parcels from a satellite-based impervious surface cover change product and georeferenced Tweets, respectively. A model assessment with random forests classifiers showed that the proposed classification workflow could classify residential and non-residential land uses at an accuracy of 81%, 4% better than modeling the same land uses from physical features alone. Using the timestamps of the impervious surface cover change product, the study also reconstructed the timeline of the identified land uses. The results indicated that the proposed approach was capable of mapping detailed land use and change in an urban region, and represents a new and viable way forward for urban land use surveying that could be especially useful for surveying and tracking changes in cities where traditional approaches and mapping products (i.e., from remote sensing products) may have a limited capacity to capture change.


Sensors ◽  
2008 ◽  
Vol 8 (2) ◽  
pp. 910-932 ◽  
Author(s):  
Jaroslaw Chormanski ◽  
Tim Van de Voorde ◽  
Tim De Roeck ◽  
Okke Batelaan ◽  
Frank Canters

2016 ◽  
Vol 20 (8) ◽  
pp. 3419-3439 ◽  
Author(s):  
Michael J. Pennino ◽  
Sujay S. Kaushal ◽  
Paul M. Mayer ◽  
Ryan M. Utz ◽  
Curtis A. Cooper

Abstract. An improved understanding of sources and timing of water, carbon, and nutrient fluxes associated with urban infrastructure and stream restoration is critical for guiding effective watershed management globally. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in urban stream restoration and sewer infrastructure. We compared an urban restored stream with two urban degraded streams draining varying levels of urban development and one stream with upland stormwater management systems over a 3-year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower (p < 0.05) monthly peak runoff (9.4 ± 1.0 mm day−1) compared with two urban degraded streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm day−1) draining higher impervious surface cover, and the stream-draining stormwater management systems and less impervious surface cover in its watershed (13.2 ± 1.9 mm day−1). The restored stream exported most carbon, nitrogen, and phosphorus at relatively lower streamflow than the two more urban catchments, which exported most carbon and nutrients at higher streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha−1 yr−1), total nitrogen (4.5 ± 0.3 kg ha−1 yr−1), and total phosphorus (161 ± 15 kg ha−1 yr−1) were significantly lower in the restored stream compared to both urban degraded streams (p < 0.05), but statistically similar to the stream draining stormwater management systems, for N exports. However, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the urban restored stream was derived from leaky sanitary sewers (during baseflow), statistically similar to the urban degraded streams. These isotopic results as well as additional tracers, including fluoride (added to drinking water) and iodide (contained in dietary salt), suggested that groundwater contamination was a major source of urban nutrient fluxes, which has been less considered compared to upland sources. Overall, leaking sewer pipes are a problem globally and our results suggest that combining stream restoration with restoration of aging sewer pipes can be critical to more effectively minimizing urban nonpoint nutrient sources. The sources, fluxes, and flowpaths of groundwater should be prioritized in management efforts to improve stream restoration by locating hydrologic hot spots where stream restoration is most likely to succeed.


2016 ◽  
Vol 42 (3) ◽  
Author(s):  
Adam Dale ◽  
Elsa Youngsteadt ◽  
Steven Frank

Trees provide ecosystem services that benefit humans and the environment. Unfortunately, urban trees often do not provide maximum services due to abiotic stress and arthropod herbivores and borers. These problems often originate from trees being planted in unsuitable conditions. Cities are warmer than natural areas because impervious surfaces absorb and reradiate heat. Higher temperatures can increase pest insect abundance and water stress, and reduce street tree condition relative to natural forests. For example, the gloomy scale insect [Melanaspsis tenebricosa Comstock (Hemiptera: Diaspididae)], a pest of red maple (Acer rubrum) street trees, is more abundant in warmer than cooler urban sites. Acer rubrum, at warmer urban sites with more M. tenebricosa, are typically in poor condition. Here, researchers demonstrate these relationships and illustrate how impervious surface cover can be used to predict the condition of A. rubrum street trees. impervious surface thresholds were then developed to define suitable planting sites that can be used by individuals with access to GIS software. Researchers present the pace-to-plant technique, which can be used by landscape professionals to quickly estimate impervious surface cover around a planting site. These thresholds predict future tree condition based on planting site impervious surface cover. The hope is that more informed planting will minimize pest infestations and maximize the future vigor and performance of street trees.


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
AJAY KUMAR RAJAWAT ◽  
PRAVEEN KUMAR

An attempt has been made to study the Physico-chemical condition of water of Yamuna River at Gokul Barrage, Mathura, (UP). The time period of study was July 2015 to June 2016. Three water samples were selected from different sites in each month for study. The parameters studied were Temperature, Turbidity, pH, DO, BOD, COD, Total Dissolved Solids and Suspended Solids. Almost all the parameters were found above the tolerance limit.


Sign in / Sign up

Export Citation Format

Share Document