scholarly journals Stream restoration and sewers impact sources and fluxes of water, carbon, and nutrients in urban watersheds

2016 ◽  
Vol 20 (8) ◽  
pp. 3419-3439 ◽  
Author(s):  
Michael J. Pennino ◽  
Sujay S. Kaushal ◽  
Paul M. Mayer ◽  
Ryan M. Utz ◽  
Curtis A. Cooper

Abstract. An improved understanding of sources and timing of water, carbon, and nutrient fluxes associated with urban infrastructure and stream restoration is critical for guiding effective watershed management globally. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in urban stream restoration and sewer infrastructure. We compared an urban restored stream with two urban degraded streams draining varying levels of urban development and one stream with upland stormwater management systems over a 3-year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower (p < 0.05) monthly peak runoff (9.4 ± 1.0 mm day−1) compared with two urban degraded streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm day−1) draining higher impervious surface cover, and the stream-draining stormwater management systems and less impervious surface cover in its watershed (13.2 ± 1.9 mm day−1). The restored stream exported most carbon, nitrogen, and phosphorus at relatively lower streamflow than the two more urban catchments, which exported most carbon and nutrients at higher streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha−1 yr−1), total nitrogen (4.5 ± 0.3 kg ha−1 yr−1), and total phosphorus (161 ± 15 kg ha−1 yr−1) were significantly lower in the restored stream compared to both urban degraded streams (p < 0.05), but statistically similar to the stream draining stormwater management systems, for N exports. However, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the urban restored stream was derived from leaky sanitary sewers (during baseflow), statistically similar to the urban degraded streams. These isotopic results as well as additional tracers, including fluoride (added to drinking water) and iodide (contained in dietary salt), suggested that groundwater contamination was a major source of urban nutrient fluxes, which has been less considered compared to upland sources. Overall, leaking sewer pipes are a problem globally and our results suggest that combining stream restoration with restoration of aging sewer pipes can be critical to more effectively minimizing urban nonpoint nutrient sources. The sources, fluxes, and flowpaths of groundwater should be prioritized in management efforts to improve stream restoration by locating hydrologic hot spots where stream restoration is most likely to succeed.

2015 ◽  
Vol 12 (12) ◽  
pp. 13149-13196 ◽  
Author(s):  
M. J. Pennino ◽  
S. S. Kaushal ◽  
P. M. Mayer ◽  
R. M. Utz ◽  
C. A. Cooper

Abstract. An improved understanding of sources and timing of water and nutrient fluxes associated with urban stream restoration is critical for guiding effective watershed management. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in stream restoration and sanitary infrastructure. We compared a restored stream with 3 unrestored streams draining urban development and stormwater management over a 3 year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower monthly peak runoff (9.4 ± 1.0 mm d−1) compared with two urban unrestored streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm d−1) draining higher impervious surface cover. Peak runoff in the restored stream was more similar to a less developed stream draining extensive stormwater management (13.2 ± 1.9 mm d−1). Interestingly, the restored stream exported most carbon, nitrogen, and phosphorus loads at relatively lower streamflow than the 2 more urban streams, which exported most of their loads at higher and less frequent streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha−1 yr−1), total nitrogen (4.5 ± 0.3 kg ha−1 yr−1), and total phosphorus (161 ± 15 g ha−1 yr−1) were significantly lower in the restored stream compared to both urban unrestored streams (p < 0.05) and similar to the stream draining stormwater management. Although stream restoration appeared to potentially influence hydrology to some degree, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the restored stream was derived from leaky sanitary sewers (during baseflow), similar to the unrestored streams. Longitudinal synoptic surveys of water and nitrate isotopes along all 4 watersheds suggested the importance of urban groundwater contamination from leaky piped infrastructure. Urban groundwater contamination was also suggested by additional tracer measurements including fluoride (added to drinking water) and iodide (contained in dietary salt). Our results suggest that integrating stream restoration with restoration of aging sanitary infrastructure can be critical to more effectively minimize watershed nutrient export. Given that both stream restoration and sanitary pipe repairs both involve extensive channel manipulation, they can be considered simultaneously in management strategies. In addition, ground water can be a major source of nutrient fluxes in urban watersheds, which has been less considered compared with upland sources and storm drains. Goundwater sources, fluxes, and flowpath should also be targeted in efforts to improve stream restoration strategies and prioritize hydrologic "hot spots" along watersheds where stream restoration is most likely to succeed.


Cities ◽  
2014 ◽  
Vol 39 ◽  
pp. 21-36 ◽  
Author(s):  
AmirReza Shahtahmassebi ◽  
Yi Pan ◽  
Lin Lin ◽  
Ashton Shortridge ◽  
Ke Wang ◽  
...  

2009 ◽  
Vol 14 (4) ◽  
pp. 362-368 ◽  
Author(s):  
David M. Theobald ◽  
Scott J. Goetz ◽  
John B. Norman ◽  
Patrick Jantz

Resources ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 20 ◽  
Author(s):  
Sabina Kordana ◽  
Daniel Słyś

Progressing urbanisation is one of the key causes of environmental degradation. This problem also applies to stormwater management. For this reason, drainage infrastructures should be designed in harmony with nature and the decision for selecting a specific stormwater management system solution must not be taken on an ad-hoc or single-perspective basis. The purpose of this paper is to identify the criteria for selecting the best solution for a problem involving the selection of a stormwater management system, and to present a method that will enable all relevant criteria to be taken into account in the decision-making process. The developed decision problem structure takes into account all criteria related to the construction and operation of stormwater infrastructure, and its individual elements were identified based on the analysis and synthesis of information regarding the principles of stormwater management in Poland. The presented approach will allow for the taking into account of all, often mutually exclusive, criteria determining the choice of the stormwater management system option. This, in turn, will make it possible to significantly simplify the decision-making process. The indicated criteria can form the basis for choosing the most favorable stormwater management system for both large urban catchments and individual facilities. Thanks to the considerable flexibility of the developed decision problem structure, its widespread application can contribute to improving the efficiency of stormwater management systems. An example of the developed model’s application in a decision-making process is presented, concerning the selection of a design variant of a single-family residential building’s stormwater management system in Poland. Four design variants were included in the analysis, and the Analytic Hierarchy Process was used as the tool to select the most favorable option. This study shows that nature-based solutions are the most beneficial decision stormwater management options.


2019 ◽  
Vol 11 (24) ◽  
pp. 2965
Author(s):  
Cheng Fu ◽  
Xiao-Peng Song ◽  
Kathleen Stewart

The land use structure is a key component to understand the complexity of urban systems because it provides a snapshot of urban dynamics and how people use space. This paper integrates socially sensed activity data with a remotely sensed land cover product in order to infer urban land use and its changes over time. We conducted a case study in the Washington D.C.–Baltimore metropolitan area to identify the pattern of land use change from undeveloped to developed land, including residential and non-residential uses for a period covering 1986–2008. The proposed approach modeled physical and behavioral features of land parcels from a satellite-based impervious surface cover change product and georeferenced Tweets, respectively. A model assessment with random forests classifiers showed that the proposed classification workflow could classify residential and non-residential land uses at an accuracy of 81%, 4% better than modeling the same land uses from physical features alone. Using the timestamps of the impervious surface cover change product, the study also reconstructed the timeline of the identified land uses. The results indicated that the proposed approach was capable of mapping detailed land use and change in an urban region, and represents a new and viable way forward for urban land use surveying that could be especially useful for surveying and tracking changes in cities where traditional approaches and mapping products (i.e., from remote sensing products) may have a limited capacity to capture change.


Sensors ◽  
2008 ◽  
Vol 8 (2) ◽  
pp. 910-932 ◽  
Author(s):  
Jaroslaw Chormanski ◽  
Tim Van de Voorde ◽  
Tim De Roeck ◽  
Okke Batelaan ◽  
Frank Canters

2016 ◽  
Vol 42 (3) ◽  
Author(s):  
Adam Dale ◽  
Elsa Youngsteadt ◽  
Steven Frank

Trees provide ecosystem services that benefit humans and the environment. Unfortunately, urban trees often do not provide maximum services due to abiotic stress and arthropod herbivores and borers. These problems often originate from trees being planted in unsuitable conditions. Cities are warmer than natural areas because impervious surfaces absorb and reradiate heat. Higher temperatures can increase pest insect abundance and water stress, and reduce street tree condition relative to natural forests. For example, the gloomy scale insect [Melanaspsis tenebricosa Comstock (Hemiptera: Diaspididae)], a pest of red maple (Acer rubrum) street trees, is more abundant in warmer than cooler urban sites. Acer rubrum, at warmer urban sites with more M. tenebricosa, are typically in poor condition. Here, researchers demonstrate these relationships and illustrate how impervious surface cover can be used to predict the condition of A. rubrum street trees. impervious surface thresholds were then developed to define suitable planting sites that can be used by individuals with access to GIS software. Researchers present the pace-to-plant technique, which can be used by landscape professionals to quickly estimate impervious surface cover around a planting site. These thresholds predict future tree condition based on planting site impervious surface cover. The hope is that more informed planting will minimize pest infestations and maximize the future vigor and performance of street trees.


Sign in / Sign up

Export Citation Format

Share Document