scholarly journals Comparative in vivo study of pure drug and fast dissolving tablets of Simvastatin

2019 ◽  
Vol 9 (4-A) ◽  
pp. 490-496
Author(s):  
M. Suresh Babu ◽  
T. E. Gopalakrishna Murthy

The objective of this study was to investigate differences in the pharmacokinetic patterns between pure drug and an optimized  formulation of fast dissolving tablets  of Simvastatin. The formulations were administered to 2 groups of white New Zealand rabbits (n=6) following cross over design pattern and the plasma levels were measured using LC-MS/MS method. Pharmacokinetic parameters were determined for each formulation. The comparison of the plasma time curves of the dosage forms showed that each dosage form caused significant differences in the drug plasma levels.  The highest mean Cmax value was observed for optimized fast dissolving tablets (68.33 ± 0.42ng/ml) compared to  pure drug (27.72 ± 0.31ng/ml). The mean time taken to peak plasma concentration for (Tmax) following administration of pure drug  was  11.53 ± 0.011hours, while it was 6.09 ± 0.072 hour following administration of selected optimized fast dissolving tablets.The elimination rate constant (Kel) for pure drug and optimized fast dissolving tablets were found to be 0.58 ± 0.012h-1and 0.53 ± 0.014 h-1 respectively.  The absorption rate constant (Ka) for pure drug and optimized fast dissolving tablets were found to be 1.68 ± 0.01h-1and 5.53 ± 0.02h-1 respectively. The AUC0-αvalues observed with optimized fast dissolving tablets686.1.±2.07 nghr/ml in compared to pure drug values 191 ± 1.43 nghr/ml. Thus, the results of pharmacokinetic studies indicated rapid and higher oral absorption of Simvastatin when administered as its fast dissolving tablets. Both Ka and AUC were markedly increased by fast dissolving tablets. Keywords: LC-MS/MS, Simvastatin, fast dissolving, In-vivo studies, pharmacokinetic parameters.

Author(s):  
D.V.R.N Bhikshapathi ◽  
I. Srinivas

In the present study, immediate release solid dispersion of Repaglinide was formulated by solvent evaporation technique. Repaglinide solid dispersions were prepared using PEG 8000, Pluronic F 127 and Gelucire 44/14 by solvent evaporation method. A 3-factor, 3-level central composite design employed to study the effect of each independent variable on dependent variables. FTIR studies revealed that no drug excipient interaction takes place. From powder X-ray diffraction (p-XRD) and by scanning electron microscopy (SEM) studies it was evident that polymorphic form of Repaglinide has been converted into an amorphous form from crystalline within the solid dispersion formulation. The correlation coefficient showed that the release profile followed Higuchi model anomalous behavior and hence release mechanism was indicative of diffusion. From in vivo studies, the AUC0→24 h and peak plasma concentration (Cmax) was doubled when compared with pure drug. In addition, in vitro dissolution efficiency was well correlated with in vivo pharmacokinetic parameters. The obtained results suggested that developed solid dispersion might be an efficacious approach for enhancing the solubility and bioavailability of Repaglinide.


Author(s):  
R. SANTOSH KUMAR ◽  
SAHITHI MUDILI

Objective: To optimize aceclofenac fast dissolving tablets employing starch glutamate as novel superdisintegrant by 23factorial design to improve bioavailability and enhance patient compliance. Methods: Starch glutamate was prepared by the esterification process. Starch glutamate physical and micromeritics properties had been evaluated and the prepared starch glutamate was used as a superdisintegrant for the formulation of the fast dissolving tablets of aceclofenac by direct compression method and optimized by employing 23factorial design. The prepared aceclofenac fast dissolving tablets were evaluated for post compression parameters as well as in vitro and in vivo release characteristics. Optimized formulation stability studies were performed at accelerated conditions for 6 mo as per ICH and WHO guidelines. Results: The prepared starch glutamate was amorphous, insoluble in aqueous and organic solvents were tested. Fast dissolving tablets of aceclofenac were formulated by employing starch glutamate as a superdisintegrant showed good tablet properties and showed an increased dissolution efficiency of the drug. Among all the formulations (F1 to F8), the formulation F8 containing 5% concentration of starch glutamate, croscarmellose sodium and, crospovidone as a superdisintegrants showed 99.7±0.15% of drug release within 5 min. Whereas the formulation F2 containing 5% concentration of starch glutamate, drug release characters were comparable to the formulation F8. Optimized formulation F2 attained peak plasma concentration within a short period and showed increased relative bioavailability of the drug. Conclusion: From the physical properties, disintegration time, in vitro dissolution studies and pharmacokinetic studies, it was concluded that fast dissolving tablets of aceclofenac tablets formulated by employing starch glutamate as a superdisintegrant enhanced the dissolution efficiency and improved the bioavailability of the drug as compared to the pure drug and stable.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Cecilia Nwadiuto Amadi ◽  
Wisdom Izuchukwu Nwachukwu

Abstract Background Cola nitida is commonly chewed in many West African cultures to ease hunger pangs and sometimes for their stimulant and euphoriant qualities. Metoclopramide is a known substrate for P-gp, SULT2A1 and CYP2D6 and studies have revealed that caffeine- a major component of Cola nitida can induce P-glycoprotein (P-gp), SULT2A1 and SULT1A1, hence a possible drug interaction may occur on co-administration. The aim of this study was to investigate the pharmacokinetic interactions of Cola nitida and metoclopramide in rabbits. Methods The study was performed in two stages using five healthy male rabbits with a 1-week washout period between treatments. Stage one involved oral administration of metoclopramide (0.5 mg/kg) alone while in the second stage, metoclopramide (0.5 mg/kg) was administered concurrently with Cola nitida (0.7 mg/kg). Blood samples were collected after each stage at predetermined intervals and analyzed for plasma metoclopramide concentration using HPLC. Results Compared with control, the metoclopramide/Cola nitida co-administration produced a decrease in plasma concentration of metoclopramide at all the time intervals except at the 7th hour. The following pharmacokinetic parameters were also decreased: area under the curve (51%), peak plasma concentration (39%), half-life (51%); while an increase in elimination rate constant (113%) and clearance rate (98%) were noted indicating rapid elimination of the drug. A minimal decrease in absorption rate (10%) was also observed. Conclusions The results of this study reveal a possible herb-drug interaction between Cola nitida and metoclopramide.


2019 ◽  
Vol 10 (2) ◽  
pp. 1143-1151
Author(s):  
Ravindra Babu M ◽  
Ravi Prakash P ◽  
Devanna N

The purpose of the present study was to formulate Solid Lipid Nanoparticles (SLNs) of Ganciclovir (GCV) in combination with Chitosan and Piperine for absorption enhancement effect. GCV loaded SLNs were prepared by hot homogenization method, optimized and characterized. Formulated SLNs were incorporated with absorption enhancers and characterized for invitro absorption (with chicken intestine), histopathological and invivo pharmacokinetic studies. Invitro absorption studies revealed that the permeability coefficient of the prepared formulation is more when compared to the pure drug, so the permeability is more for prepared formulation. In vivo pharmacokinetic study showed a significant increase in the Cmax, AUC, biological half-life and decrease in elimination rate constant for prepared formulation compared to pure drug. Histopathological studies also showed mild reversible damage of epithelial cells with Chitosan which indicates the safety and efficacy of the formulation. Thus, GCV loaded SLNs prepared with Chitosan can be clinically promising for enhancing the oral, intestinal absorption of the said BCS Class-III drug.


2021 ◽  
Author(s):  
Shweta Sinha ◽  
Ajay Prakash ◽  
Bikash Medhi ◽  
Alka Sehgal ◽  
Daniela I Batovska ◽  
...  

Abstract Objective: Malaria is a major global health concern with the urgent need for new treatment alternatives due to the alarming increase of drug-resistant Plasmodium strains. Chalcones and its derivatives are important pharmacophores showing antimalarial activity. Substandard pharmacokinetic variables are often responsible for insufficient therapeutic effect. Determination of the pharmacokinetic variables at the preliminary step of drug development for any drug candidates is an essential component of in vivo antimalarial efficacy tests. Therefore, three chalcone derivatives, 1, 2, and 3, having antimalarial potency were studied further for potential therapeutic efficacy. Results: In vivo pharmacokinetic studies of these three derivatives were performed on New Zealand White rabbits. The three derivatives were administered intra-peritoneally or orally at effective dose concentration and blood samples at different time points were collected. The determination of drug concentration was done through reverse phase-high performance liquid chromatography. The peak plasma concentration of derivative 1, 2, and 3 were 1.96 ± 0.46 µg/mL, 69.89 ± 5.49 µg/mL and 3.74 ± 1.64 µg/mL. The results indicate a very low bioavailability of these derivatives. The present study gives a benchmark to advance the investigation of more derivatives in order to revamp the pharmacokinetic variables while maintaining both potency and metabolic constancy.


2021 ◽  
Author(s):  
Shweta Sinha ◽  
Ajay Prakash ◽  
Bikash Medhi ◽  
Alka Sehgal ◽  
Daniela I Batovska ◽  
...  

Abstract Objective: Malaria is a major global health concern with the urgent need for new treatment alternatives due to the alarming increase of drug-resistant Plasmodium strains. Chalcones and its derivatives are important pharmacophores showing antimalarial activity. Substandard pharmacokinetic variables are often responsible for insufficient therapeutic effect. Determination of the pharmacokinetic variables at the preliminary step of drug development for any drug candidates is an essential component of in vivo antimalarial efficacy tests. Therefore, three chalcone derivatives, 1, 2, and 3, having antimalarial potency were studied further for potential therapeutic efficacy. Results: In vivo pharmacokinetic studies of these three derivatives were performed on New Zealand White rabbits. The three derivatives were administered intra-peritoneally or orally at effective dose concentration and blood samples at different time points were collected. The determination of drug concentration was done through reverse phase-high performance liquid chromatography. The peak plasma concentration of derivative 1, 2, and 3 were 1.96 ± 0.46 µg/mL, 69.89 ± 5.49 µg/mL, and 3.74 ± 1.64 µg/mL. The results indicate a very low bioavailability of these derivatives. The present study gives a benchmark to advance the investigation of more derivatives in order to revamp the pharmacokinetic variables while maintaining both potency and metabolic constancy.


Author(s):  
SEELAM RAMYA KRISHNA ◽  
A. RAMU ◽  
S. VIDYADHARA ◽  
A. PRAMEELA RANI

Objective: In vivo pharmacokinetic studies of clopidogrel and dipyridamole floating microballoons to check their bioavailability enhancement. Methods: The bioanalytical method development was carried by using HPLC with column Poroshell 120 EC-C 18; 4.6x100 mm. The in vivo pharmacokinetic studies were performed in Wistar male rats and the obtained data from the pharmacokinetic parameters were analyzed using PK Solver software. Results: The developed bioanalytical method was found to be linear in the concentration range of 1-100 ng/ml for clopidogrel bisulfate and 0.02-4µg/ml for dipyridamole with correlation coefficient of 0.9993 and 0.9987 respectively. The study results showed that the method was simple, linear, accurate and precise. The in vivo studies indicated that the AUC was found to be increased by 33.3% and 154.5% for clopidogrel and dipyridamole micro balloons, respectively, when compared to their pure drugs. Conclusion: The bioanalytical methods development and their validation parameters indicated that the methods are accurate, precise and linear in the studied range of concentrations. In vivo test results infer to the effective, sustained release of both the drugs when formulated as micro balloons and increase in the absorption, thereby enhancing the bioavailability of the drugs. The pharmacokinetic studies also confirmed the increase in the mean residence time of the drugs when formulated as floating microballoons.


1997 ◽  
Vol 77 (04) ◽  
pp. 660-667 ◽  
Author(s):  
G C White ◽  
S Courter ◽  
G L Bray ◽  
M Lee ◽  
E D Gomperts ◽  
...  

SummaryA prospective, open-label multicenter investigation has been conducted to compare pharmacokinetic parameters of recombinant DNA-derived FVIII (rFVIII) and plasma-derived FVIII concentrate (pdFVIII) and to assess safety and efficacy of long-term home-treat- ment with rFVIII for subjects with hemophilia A. Following comparative in vivo pharmacokinetic studies, 69 patients with severe (n = 67) or moderate (n = 2) hemophilia A commenced a program of home treatment using rFVIII exclusively for prophylaxis and treatment of all bleeding episodes for a period of 1.0 to 5.7 years (median 3.7 years). The mean in vivo half-lives of rFVIII and pdFVIII were both 14.7 h. In vivo incremental recoveries at baseline were 2.40%/IU/kg and 2.47%/IU/kg, respectively (p = 0.59). The response to home treatment with rFVIII was categorized as good or excellent in 3,195 (91.2%) of 3,481 evaluated bleeding episodes. Thirteen patients received rFVIII for prophylaxis for twenty-four surgical procedures. In all cases, hemostasis was excellent. Adverse reactions were observed in only 13 of 13,591 (0.096%) infusions of rFVIII; none was serious. No patient developed an inhibitor to r FVIII.


Author(s):  
Narendar Dudhipala ◽  
Arjun Narala ◽  
Dinesh Suram ◽  
Karthik Yadav Janga

The objective of this present study is to develop a semisolid dispersion (SSD) of zaleplon with the aid of self-emulsifying lipid based amphiphilic carriers (TPGS E or Gelucire 44/14) addressing the poor solubility of this drug. A linear relationship between the solubility of drug with respect to increase in the concentration of lipid surfactant in aqueous medium resulting in AL type phase diagram was observed from phase solubility studies. Fusion method was employed to obtain semisolid dispersions (SSD) of zaleplon which showed high content uniformity of drug. The absence of chemical interactions between the pure drug, excipients and formulations were conferred by Fourier transmission infrared spectroscopic examinations. The photographic images from polarized optical microscopic studies revealed the change in crystalline form of drug to amorphous or molecular state. The superior dissolution parameters of zaleplon from SSD over pure crystalline drug interpreted from in vitro dissolution studies envisage the ability of these lipid surfactants as solubility enhancers. Further, the caliber of TPGS E or Gelucire 44/14 in encouraging the GI absorption of drug was evident with the higher human effective permeability coefficient and fraction oral dose of drug absorbed from SSD in situ intestinal permeation study. In conclusion, in vivo studies in Wister rats demonstrated an improvement in the oral bioavailability of zaleplon from SSD over control pure drug suspension suggesting the competence of Gelucire 44/14 and TPGS E as conscientious carriers to augment the dissolution rate limited bioavailability of this active


Author(s):  
Kishan Veerabrahma ◽  
Swapna Madishetty ◽  
Muzammil Afzal Syed ◽  
Prabhakar Kandadi

Cationic nanoemulsions were reported to have increased bioavailability. The aim of present study was to prepare a cationic lipid nanoemulsion of diclofenac acid (LNEs) for improved oral bioavailability to treat arthritic conditions. The LNEs of diclofenac acid were prepared by using soya bean oil, egg lecithin, cholesterol and stearylamine. Stearylamine was used as positive charge inducer. The LNEs were processed by homogenization and ultrasonication. The formulation composition was selected based on earlier reports. The LNEs were characterized for size and zeta potential. The physical stability of LNEs was studied using autoclaving, centrifugal, desorption (dilution effect) stresses and on storage. The total drug content and entrapment efficiency were determined using HPLC. During in vivo studies in Wistar rats, the pharmacokinetic parameters of LNEs were compared with a prepared diclofenac suspension in sodium CMC mucilage. The selected formulations, F1, F2 and F3, were relatively stable during centrifugal stress, dilution stress and on storage. The drug content was found to be 2.38 ± 1.70 mg/ml for F1, 2.30 ± 0.82 mg/ml for F2, and 2.45 ± 0.66 mg/ml for F3. The entrapment efficiencies were 97.83 ± 0.53%, 97.87 ± 1.22% and 98.25 ± 0.21% for F1, F2 and F3 respectively. The cumulative percentage drug release from F1, F2 and F3 showed more release in pH 6.8 phosphate buffer than in pH 1.2 HCl. During oral bioavailability studies, the LNEs showed higher serum concentrations than a suspension. The relative bioavailability of the LNE formulations F1, F2 and F3 were found to be 2.35, 2.94 and 6.28 times that of F4 suspension and were statistically significant. Of all, the cationic lipid nanoemulsion (F3) was superior in improving bioavailability, when compared with plain emulsion (F1) and cholesterol containing LNE (F2). The study helps in designing the cationic oral nanoemulsions to improve the oral bioavailability of diclofenac.


Sign in / Sign up

Export Citation Format

Share Document