scholarly journals Isospin breaking corrections to the HVP at the physical point

2019 ◽  
Author(s):  
Vera Guelpers ◽  
Andreas Juttner ◽  
Christoph Lehner ◽  
Antonin Portelli ◽  
2018 ◽  
Vol 120 (15) ◽  
Author(s):  
B. Chakraborty ◽  
C. T. H. Davies ◽  
C. DeTar ◽  
A. X. El-Khadra ◽  
E. Gámiz ◽  
...  

1970 ◽  
Vol 1 (3) ◽  
pp. 181-205 ◽  
Author(s):  
ERIK ERIKSSON

The term “stochastic hydrology” implies a statistical approach to hydrologic problems as opposed to classic hydrology which can be considered deterministic in its approach. During the International Hydrology Symposium, held 6-8 September 1967 at Fort Collins, a number of hydrology papers were presented consisting to a large extent of studies on long records of hydrological elements such as river run-off, these being treated as time series in the statistical sense. This approach is, no doubt, of importance for future work especially in relation to prediction problems, and there seems to be no fundamental difficulty for introducing the stochastic concepts into various hydrologic models. There is, however, some developmental work required – not to speak of educational in respect to hydrologists – before the full benefit of the technique is obtained. The present paper is to some extent an exercise in the statistical study of hydrological time series – far from complete – and to some extent an effort to interpret certain features of such time series from a physical point of view. The material used is 30 years of groundwater level observations in an esker south of Uppsala, the observations being discussed recently by Hallgren & Sands-borg (1968).


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
C. Alexandrou ◽  
A. Athenodorou ◽  
K. Hadjiyiannakou ◽  
A. Todaro

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Maxwell T. Hansen ◽  
Fernando Romero-López ◽  
Stephen R. Sharpe

Abstract We derive relations between finite-volume matrix elements and infinite-volume decay amplitudes, for processes with three spinless, degenerate and either identical or non-identical particles in the final state. This generalizes the Lellouch-Lüscher relation for two-particle decays and provides a strategy for extracting three-hadron decay amplitudes using lattice QCD. Unlike for two particles, even in the simplest approximation, one must solve integral equations to obtain the physical decay amplitude, a consequence of the nontrivial finite-state interactions. We first derive the result in a simplified theory with three identical particles, and then present the generalizations needed to study phenomenologically relevant three-pion decays. The specific processes we discuss are the CP-violating K → 3π weak decay, the isospin-breaking η → 3π QCD transition, and the electromagnetic γ* → 3π amplitudes that enter the calculation of the hadronic vacuum polarization contribution to muonic g − 2.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Rabinovitch ◽  
Y. Biton ◽  
D. Braunstein ◽  
I. Aviram ◽  
R. Thieberger ◽  
...  

AbstractIn the last several years, quite a few papers on the joint question of transport, tortuosity and percolation have appeared in the literature, dealing with passage of miscellaneous liquids or electrical currents in different media. However, these methods have not been applied to the passage of action potential in heart fibrosis (HF), which is crucial for problems of heart arrhythmia, especially of atrial tachycardia and fibrillation. In this work we address the HF problem from these aspects. A cellular automaton model is used to analyze percolation and transport of a distributed-fibrosis inflicted heart-like tissue. Although based on a rather simple mathematical model, it leads to several important outcomes: (1) It is shown that, for a single wave front (as the one emanated by the heart's sinus node), the percolation of heart-like matrices is exactly similar to the forest fire case. (2) It is shown that, on the average, the shape of the transport (a question not dealt with in relation to forest fire, and deals with the delay of action potential when passing a fibrotic tissue) behaves like a Gaussian. (3) Moreover, it is shown that close to the percolation threshold the parameters of this Gaussian behave in a critical way. From the physical point of view, these three results are an important contribution to the general percolation investigation. The relevance of our results to cardiological issues, specifically to the question of reentry initiation, are discussed and it is shown that: (A) Without an ectopic source and under a mere sinus node operation, no arrhythmia is generated, and (B) A sufficiently high refractory period could prevent some reentry mechanisms, even in partially fibrotic heart tissue.


2016 ◽  
Vol 93 (7) ◽  
Author(s):  
Claudio Bonati ◽  
Massimo D’Elia ◽  
Marco Mariti ◽  
Michele Mesiti ◽  
Francesco Negro ◽  
...  
Keyword(s):  

2017 ◽  
Vol 24 (1) ◽  
pp. 152-167
Author(s):  
Izhak Bucher ◽  
Ran Gabai ◽  
Harel Plat ◽  
Amit Dolev ◽  
Eyal Setter

Vibrations are often represented as a sum of standing waves in space, i.e. normal modes of vibration. While this can be mathematically accurate, the representation as travelling waves can be compact and more appropriate from a physical point of view, in particular when the energy flux along the structure is meaningful. The quantification of travelling waves assists in computing the energy being transferred and propagated along a structure. It can provide local as well as global information about the structure through which the mechanical energy flows. Presented in this paper is a new method to quantify the fraction of mechanical power being transmitted in a vibration cycle at a specific direction in space using measured data. It is shown that the method can detect local defects causing slight non-uniformity of the energy flux. Equivalence is being made with the electrical power factor and electromagnetic standing waves ratio, commonly employed in such cases. Other methods to perform experiment based wave identification in one-dimension are compared with the power flow based identification. Including a signal processing approach that fits an ellipse to the complex amplitude curve and Hilbert transform for obtaining the local phase and amplitude. A new representation of the active and reactive power flow is developed and its relationship to standing waves ratio is demonstrated analytically and experimentally.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Jason Aebischer ◽  
Andrzej J. Buras ◽  
Jacky Kumar

Abstract Recently the RBC-UKQCD lattice QCD collaboration presented new results for the hadronic matrix elements relevant for the ratio ε′/ε in the Standard Model (SM) albeit with significant uncertainties. With the present knowledge of the Wilson coefficients and isospin breaking effects there is still a sizable room left for new physics (NP) contributions to ε′/ε which could both enhance or suppress this ratio to agree with the data. The new SM value for the K0 − $$ {\overline{K}}^0 $$ K ¯ 0 mass difference ∆MK from RBC-UKQCD is on the other hand by 2σ above the data hinting for NP required to suppress ∆MK. Simultaneously the most recent results for K+ → $$ {\pi}^{+}\nu \overline{\nu} $$ π + ν ν ¯ from NA62 and for KL → $$ {\pi}^0\nu \overline{\nu} $$ π 0 ν ν ¯ from KOTO still allow for significant NP contributions. We point out that the suppression of ∆MK by NP requires the presence of new CP-violating phases with interesting implications for K → $$ \pi \nu \overline{\nu} $$ πν ν ¯ , KS → μ+μ− and KL → π0ℓ+ℓ− decays. Considering a Z′-scenario within the SMEFT we analyze the dependence of all these observables on the size of NP still allowed by the data on ε′/ε. The hinted ∆MK anomaly together with the εK constraint implies in the presence of only left-handed (LH) or right-handed (RH) flavour-violating Z′ couplings strict correlation between K+ → $$ {\pi}^{+}\nu \overline{\nu} $$ π + ν ν ¯ and KL → $$ {\pi}^0\nu \overline{\nu} $$ π 0 ν ν ¯ branching ratios so that they are either simultaneously enhanced or suppressed relative to SM predictions. An anticorrelation can only be obtained in the presence of both LH and RH couplings. Interestingly, the NP QCD penguin scenario for ε′/ε is excluded by SMEFT renormalization group effects in εK so that NP effects in ε′/ε are governed by electroweak penguins. We also investigate for the first time whether the presence of a heavy Z′ with flavour violating couplings could generate through top Yukawa renormalization group effects FCNCs mediated by the SM Z-boson. The outcome turns out to be very interesting.


2011 ◽  
Vol 106 (13) ◽  
Author(s):  
W. Satuła ◽  
J. Dobaczewski ◽  
W. Nazarewicz ◽  
M. Rafalski
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document