scholarly journals Observations of the 86 GHz SiO maser sources in the Central Parsec of the Galactic Centre

2020 ◽  
Author(s):  
Abhijeet Borkar ◽  
Andreas Eckart ◽  
Christian Straubmeier ◽  
Nadeen Sabha ◽  
Laurant O. Sjouwerman ◽  
...  
2016 ◽  
Vol 12 (S329) ◽  
pp. 366-368 ◽  
Author(s):  
Christopher M. P. Russell

Abstract360-degree videos are a new type of movie that renders over all 4π steradian. Video sharing sites such as YouTube now allow this unique content to be shared via virtual reality (VR) goggles, hand-held smartphones/tablets, and computers. Creating 360° videos from astrophysical simulations is not only a new way to view these simulations as you are immersed in them, but is also a way to create engaging content for outreach to the public. We present what we believe is the first 360° video of an astrophysical simulation: a hydrodynamics calculation of the central parsec of the Galactic centre. We also describe how to create such movies, and briefly comment on what new science can be extracted from astrophysical simulations using 360° videos.


1999 ◽  
Vol 193 ◽  
pp. 476-477
Author(s):  
Luc Dessart ◽  
Paul A. Crowther ◽  
Linda J. Smith ◽  
Bruce Bohannan

The Galactic Centre (GC) region has in recent years attracted a lot of attention from the hot star community following the discovery of numerous He I emission line sources (Krabbe et al. 1991). Recent studies (e.g., Najarro et al. 1994) revealed stellar properties reminiscent of cool Wolf-Rayet stars, providing clues to the origin of the Lyman and He+ ionizing fluxes, and the luminosity in the central parsec of our galaxy. They allow the recent star formation history to be unveiled, and assess the effect of high metallicity on massive star evolution.


2015 ◽  
Vol 448 (4) ◽  
pp. 3363-3373 ◽  
Author(s):  
J. Moultaka ◽  
A. Eckart ◽  
N. Sabha

Author(s):  
Aleksey Generozov

Abstract The Galactic centre contains several young populations within its central parsec: a disk between ∼0.05 to 0.5 pc from the centre, and the isotropic S-star cluster extending an order of magnitude further inwards in radius. Recent observations (i.e. spectroscopy and hypervelocity stars) suggest that some S-stars originate in the disk. In particular, the S-stars may be remnants of tidally disrupted disk binaries. However, there is an apparent inconsistency in this scenario: the disk contains massive O and Wolf–Rayet stars while the S-stars are lower mass, B stars. We explore two different explanations for this apparent discrepancy: (i) a built-in bias in binary disruptions, where the primary star remains closer in energy to the centre-of-mass orbit than the secondary and (ii) selective tidal disruption of massive stars within the S-star cluster. The first explanation is plausible. On the other hand, tidal disruptions have not strongly affected the mass distribution of the S-stars over the last several Myr.


1967 ◽  
Vol 31 ◽  
pp. 239-251 ◽  
Author(s):  
F. J. Kerr

A review is given of information on the galactic-centre region obtained from recent observations of the 21-cm line from neutral hydrogen, the 18-cm group of OH lines, a hydrogen recombination line at 6 cm wavelength, and the continuum emission from ionized hydrogen.Both inward and outward motions are important in this region, in addition to rotation. Several types of observation indicate the presence of material in features inclined to the galactic plane. The relationship between the H and OH concentrations is not yet clear, but a rough picture of the central region can be proposed.


1967 ◽  
Vol 31 ◽  
pp. 177-179
Author(s):  
W. W. Shane

In the course of several 21-cm observing programmes being carried out by the Leiden Observatory with the 25-meter telescope at Dwingeloo, a fairly complete, though inhomogeneous, survey of the regionl11= 0° to 66° at low galactic latitudes is becoming available. The essential data on this survey are presented in Table 1. Oort (1967) has given a preliminary report on the first and third investigations. The third is discussed briefly by Kerr in his introductory lecture on the galactic centre region (Paper 42). Burton (1966) has published provisional results of the fifth investigation, and I have discussed the sixth in Paper 19. All of the observations listed in the table have been completed, but we plan to extend investigation 3 to a much finer grid of positions.


1967 ◽  
Vol 31 ◽  
pp. 405
Author(s):  
F. J. Kerr

A continuum survey of the galactic-centre region has been carried out at Parkes at 20 cm wavelength over the areal11= 355° to 5°,b11= -3° to +3° (Kerr and Sinclair 1966, 1967). This is a larger region than has been covered in such surveys in the past. The observations were done as declination scans.


Author(s):  
Nicholas Mee

The Cosmic Mystery Tour is a brief account of modern physics and astronomy presented in a broad historical and cultural context. The book is attractively illustrated and aimed at the general reader. Part I explores the laws of physics including general relativity, the structure of matter, quantum mechanics and the Standard Model of particle physics. It discusses recent discoveries such as gravitational waves and the project to construct LISA, a space-based gravitational wave detector, as well as unresolved issues such as the nature of dark matter. Part II begins by considering cosmology, the study of the universe as a whole and how we arrived at the theory of the Big Bang and the expanding universe. It looks at the remarkable objects within the universe such as red giants, white dwarfs, neutron stars and black holes, and considers the expected discoveries from new telescopes such as the Extremely Large Telescope in Chile, and the Event Horizon Telescope, currently aiming to image the supermassive black hole at the galactic centre. Part III considers the possibility of finding extraterrestrial life, from the speculations of science fiction authors to the ongoing search for alien civilizations known as SETI. Recent developments are discussed: space probes to the satellites of Jupiter and Saturn; the discovery of planets in other star systems; the citizen science project SETI@Home; Breakthrough Starshot, the project to develop technologies to send spacecraft to the stars. It also discusses the Fermi paradox which argues that we might actually be alone in the cosmos


1997 ◽  
Vol 478 (1) ◽  
pp. 206-210 ◽  
Author(s):  
Shigetomo Shiki ◽  
Masatoshi Ohishi ◽  
Shuji Deguchi

2020 ◽  
Vol 501 (1) ◽  
pp. 730-746
Author(s):  
Omri Ginzburg ◽  
Marc Huertas-Company ◽  
Avishai Dekel ◽  
Nir Mandelker ◽  
Gregory Snyder ◽  
...  

ABSTRACT We use deep learning to explore the nature of observed giant clumps in high-redshift disc galaxies, based on their identification and classification in cosmological simulations. Simulated clumps are detected using the 3D gas and stellar densities in the VELA zoom-in cosmological simulation suite, with ${\sim}25\ \rm {pc}$ maximum resolution, targeting main-sequence galaxies at 1 < z < 3. The clumps are classified as long-lived clumps (LLCs) or short-lived clumps (SLCs) based on their longevity in the simulations. We then train neural networks to detect and classify the simulated clumps in mock, multicolour, dusty, and noisy HST-like images. The clumps are detected using an encoder–decoder convolutional neural network (CNN), and are classified according to their longevity using a vanilla CNN. Tests using the simulations show our detector and classifier to be ${\sim}80{{\ \rm per\ cent}}$ complete and ${\sim}80{{\ \rm per\ cent}}$ pure for clumps more massive than ∼107.5 M⊙. When applied to observed galaxies in the CANDELS/GOODS S+N fields, we find both types of clumps to appear in similar abundances in the simulations and the observations. LLCs are, on average, more massive than SLCs by ∼0.5 dex, and they dominate the clump population above Mc ≳ 107.6 M⊙. LLCs tend to be found closer to the galactic centre, indicating clump migration to the centre or preferential formation at smaller radii. The LLCs are found to reside in high-mass galaxies, indicating better clump survivability under supernova feedback there, due to clumps being more massive in these galaxies. We find the clump masses and radial positions in the simulations and the observations to agree within a factor of 2.


Sign in / Sign up

Export Citation Format

Share Document