scholarly journals Parallel entangling gate operations and two-way quantum communication in spin chains

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 460
Author(s):  
Rozhin Yousefjani ◽  
Abolfazl Bayat

The power of a quantum circuit is determined through the number of two-qubit entangling gates that can be performed within the coherence time of the system. In the absence of parallel quantum gate operations, this would make the quantum simulators limited to shallow circuits. Here, we propose a protocol to parallelize the implementation of two-qubit entangling gates between multiple users which are spatially separated, and use a commonly shared spin chain data-bus. Our protocol works through inducing effective interaction between each pair of qubits without disturbing the others, therefore, it increases the rate of gate operations without creating crosstalk. This is achieved by tuning the Hamiltonian parameters appropriately, described in the form of two different strategies. The tuning of the parameters makes different bilocalized eigenstates responsible for the realization of the entangling gates between different pairs of distant qubits. Remarkably, the performance of our protocol is robust against increasing the length of the data-bus and the number of users. Moreover, we show that this protocol can tolerate various types of disorders and is applicable in the context of superconductor-based systems. The proposed protocol can serve for realizing two-way quantum communication.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Changrim Ahn ◽  
Matthias Staudacher

Abstract We refine the notion of eclectic spin chains introduced in [1] by including a maximal number of deformation parameters. These models are integrable, nearest-neighbor n-state spin chains with exceedingly simple non-hermitian Hamiltonians. They turn out to be non-diagonalizable in the multiparticle sector (n > 2), where their “spectrum” consists of an intricate collection of Jordan blocks of arbitrary size and multiplicity. We show how and why the quantum inverse scattering method, sought to be universally applicable to integrable nearest-neighbor spin chains, essentially fails to reproduce the details of this spectrum. We then provide, for n=3, detailed evidence by a variety of analytical and numerical techniques that the spectrum is not “random”, but instead shows surprisingly subtle and regular patterns that moreover exhibit universality for generic deformation parameters. We also introduce a new model, the hypereclectic spin chain, where all parameters are zero except for one. Despite the extreme simplicity of its Hamiltonian, it still seems to reproduce the above “generic” spectra as a subset of an even more intricate overall spectrum. Our models are inspired by parts of the one-loop dilatation operator of a strongly twisted, double-scaled deformation of $$ \mathcal{N} $$ N = 4 Super Yang-Mills Theory.


2012 ◽  
Vol 11 ◽  
pp. 183-190 ◽  
Author(s):  
MARCEL KOSSOW ◽  
PETER SCHUPP ◽  
STEFAN KETTEMANN

The Heisenberg spin 1/2 chain is revisited in the perturbative RG approach with special focus on the transition of the critical exponents. We give a compact review that first order RG in the couplings is sufficient to derive the exact transition from ν = 1 to ν = 2/3, if the boson radius obtained in the bosonization procedure is replaced by the exact radius obtained in the Bethe approach. We explain the fact, that from the bosonization procedure alone, the critical exponent can not be derived correctly in the isotropic limit Jz → J. We further state that this fact is important if we consider to bosonize the antiferromagnetic super spin chain for the quantum Hall effect.


2007 ◽  
Vol 75 (6) ◽  
Author(s):  
Kosuke Shizume ◽  
Kurt Jacobs ◽  
Daniel Burgarth ◽  
Sougato Bose

2009 ◽  
Vol 373 (6) ◽  
pp. 636-643 ◽  
Author(s):  
Z.-M. Wang ◽  
M.S. Byrd ◽  
B. Shao ◽  
J. Zou

2012 ◽  
Vol 14 (9) ◽  
pp. 095025 ◽  
Author(s):  
Nicholas Chancellor ◽  
Stephan Haas
Keyword(s):  

1991 ◽  
Vol 06 (29) ◽  
pp. 5231-5248 ◽  
Author(s):  
LUCA MEZINCESCU ◽  
RAFAEL I. NEPOMECHIE

We construct an open quantum spin chain from the “twisted” [Formula: see text]R matrix in the fundamental representation which has the quantum algebra symmetry Uq[ su (2)]. This anisotropic spin-1 chain is different from the Uq[ su (2)]-invariant chain constructed from the “untwisted” [Formula: see text] spin-1 R matrix (namely, the spin-1 XXZ chain of Fateev-Zamolodchikov with boundary terms) but, nevertheless, is also completely integrable. We discuss the general case of an R matrix of the type g(k), where k∈{1, 2, 3}, and g is any simple Lie algebra.


2011 ◽  
Vol 84 (2) ◽  
Author(s):  
Zhao-Ming Wang ◽  
C. Allen Bishop ◽  
Yong-Jian Gu ◽  
Bin Shao

2018 ◽  
Vol 5 (5) ◽  
Author(s):  
Francesca Pietracaprina ◽  
Nicolas Macé ◽  
David J. Luitz ◽  
Fabien Alet

We provide a pedagogical review on the calculation of highly excited eigenstates of disordered interacting quantum systems which can undergo a many-body localization (MBL) transition, using shift-invert exact diagonalization. We also provide an example code at https://bitbucket.org/dluitz/sinvert_mbl. Through a detailed analysis of the simulational parameters of the random field Heisenberg spin chain, we provide a practical guide on how to perform efficient computations. We present data for mid-spectrum eigenstates of spin chains of sizes up to L=26L=26. This work is also geared towards readers with interest in efficiency of parallel sparse linear algebra techniques that will find a challenging application in the MBL problem.


Sign in / Sign up

Export Citation Format

Share Document