scholarly journals DYNAMIC EFFECTS IN THE BEAM ON AN ELASTIC FOUNDATION CAUSED BY THE SUDDEN TRANSFORMATION OF SUPPORTING CONDITIONS

Author(s):  
Vladimir I. Travush ◽  
Vladimir A. Gordon ◽  
Vitaly I. Kolchunov ◽  
Yevgeny V. Leontiev

A mathematical model of a dynamic process in a loaded beam on an elastic Winkler base with the sudden formation of a defect in the form of a change in the boundary conditions is constructed. The solution of the static problem of bending of the beam fixed at the ends serves as the initial condition for the process of forced vibrations hinged supported at the ends of the beam, which arose after a sudden break in the bonds that prevented the rotation of the end sections. Dynamic increments of stresses in the beam for various combinations of beam and foundation parameters are determined. determined.

2018 ◽  
Vol 188 ◽  
pp. 03008 ◽  
Author(s):  
Vladimir A. Gordon ◽  
Olga V. Pilipenko ◽  
Vladimir A. Trifonov

The authors constructed a mathematical model of a dynamic process in a loaded beam on the elastic Winkler foundation in a sudden formation of a defect in the form of a change in the boundary conditions. The solution of the static problem of bending of the beam pinched at the ends served as the initial condition for the process of forced vibrations hinged supported at the ends of a beam, which arose after a sudden break in the connections that prevented the rotation of the end sections. The authors determined the dynamic increments of stresses in a beam for various combinations of a beam and foundation parameters.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 515
Author(s):  
Olga Mazur ◽  
Jan Awrejcewicz

Vibrations of single-layered graphene sheets subjected to a longitudinal magnetic field are considered. The Winkler-type and Pasternak-type foundation models are employed to reproduce the surrounding elastic medium. The governing equation is based on the modified couple stress theory and Kirchhoff–Love hypotheses. The effect of the magnetic field is taken into account due to the Lorentz force deriving from Maxwell’s equations. The developed approach is based on applying the Ritz method. The proposed method is tested by a comparison with results from the existing literature. The numerical calculations are performed for different boundary conditions, including the mixed ones. The influence of the material length scale parameter, the elastic foundation parameters, the magnetic parameter and the boundary conditions on vibration frequencies is studied. It is observed that an increase of the magnetic parameter, as well as the elastic foundation parameters, brings results closer to the classical plate theory results. Furthermore, the current study can be applied to the design of microplates and nanoplates and their optimal usage.


2012 ◽  
Vol 28 (3) ◽  
pp. 479-488 ◽  
Author(s):  
Ahmad Rahbar-Ranji ◽  
E. Bahmyari

AbstractElement Free Galerkin method was used to analyze bending of thin plates with variable thickness resting on one parameter elastic foundation. Thickness of plate is considered as linearly varying in one direction. Formulation could be applied to plates of any shape with general boundary conditions and loadings. Convergence of solution was examined for different number of nodes, thickness variation and foundation parameters. It was found that for deflection good results were achieved even with small number of nodes regardless of boundary condition, thickness variation and foundation parameters. Accuracy of method is checked against available results and good agreements were found. Applicability of method is demonstrated by solving numerical examples with different boundary conditions, thickness and foundation parameters, and loadings.


1991 ◽  
Vol 19 (3) ◽  
pp. 142-162 ◽  
Author(s):  
D. S. Stutts ◽  
W. Soedel ◽  
S. K. Jha

Abstract When measuring bearing forces of the tire-wheel assembly during drum tests, it was found that beyond certain speeds, the horizontal force variations or so-called fore-aft forces were larger than the force variations in the vertical direction. The explanation of this phenomenon is still somewhat an open question. One of the hypothetical models argues in favor of torsional oscillations caused by a changing rolling radius. But it appears that there is a simpler answer. In this paper, a mathematical model of a tire consisting of a rigid tread ring connected to a freely rotating wheel or hub through an elastic foundation which has radial and torsional stiffness was developed. This model shows that an unbalanced mass on the tread ring will cause an oscillatory rolling motion of the tread ring on the drum which is superimposed on the nominal rolling. This will indeed result in larger fore-aft than vertical force variations beyond certain speeds, which are a function of run-out. The rolling motion is in a certain sense a torsional oscillation, but postulation of a changing rolling radius is not necessary for its creation. The model also shows the limitation on balancing the tire-wheel assembly at the wheel rim if the unbalance occurs at the tread band.


Author(s):  
K. H. Levchyk ◽  
M. V. Shcherbyna

A technical solution is proposed for the elimination the grabbing of drilling tool, based on the use of energy due to the circulation of the drilling fluid. The expediency eliminating the grabbing drilling tool using the hydro-impulse method is substantiated. A method of drawing up a mathematical model for the dynamic process of a grabbing string of drill pipes in the case of perturbation of hydro-impulse oscillations in the area of the productive rock layer is developed. The law of longitudinal displacements arising in the trapped string is obtained, which allows choosing the optimal geometrical parameters of the passage channels and the frequency rotational of shutter for these channels. Recommendations for using this method for practical use have been systematized.


2020 ◽  
Vol 91 (5) ◽  
pp. 70-76
Author(s):  
E.V. LEONTIEV ◽  
◽  

The paper considers the system "beam - elastic foundation", in which a beam with free edges was at first on a solid elastic foundation, but when a defect suddenly forms in the foundation under the right side of the beam, part of foundation was removed from design model. As a result of calculations performed by the method of initial parameters, the displacements and internal forces for the static problem are determined. The dynamic problem of determining the forces and displacements was solved, taking into account the three vibration loads F (t) = F sinγt applied at arbitrary points d when the conditions for supporting the right side of the beam on an elastic foundation were changed, the values of the dynamics coefficients were determined. Conditions are formulated that must be taken into account when analyzing the dynamic behavior of a structure under the influence of vibration loads in the case of a change in the conditions of bearing on an elastic foundation.


2007 ◽  
Vol 80 (6) ◽  
pp. 1065-1071
Author(s):  
Yu. M. Pleskachevskii ◽  
V. I. Timoshpol’skii ◽  
S. V. Shil’ko ◽  
S. L. Gavrilenko ◽  
S. M. Kabishov

2019 ◽  
Vol 19 (03) ◽  
pp. 1950027 ◽  
Author(s):  
Igor Planinc ◽  
Simon Schnabl

This paper focuses on development of a new mathematical model and its analytical solution for buckling analysis of elastic columns weakened simultaneously with transverse open cracks and partial longitudinal delamination. Consequently, the analytical solution for buckling loads is derived for the first time. The critical buckling loads are calculated using the proposed analytical model. A parametric study is performed to investigate the effects of transverse crack location and magnitude, length and degree of partial longitudinal delamination, and different boundary conditions on critical buckling loads of weakened columns. It is shown that the critical buckling loads of weakened columns can be greatly affected by all the analyzed parameters. Finally, the presented results can be used as a benchmark solution.


Author(s):  
Juan Sebastián Carvajal-Muñoz ◽  
Carlos Alberto Vega-Posada ◽  
Julio César Saldarriaga-Molina

This paper describes an analytical approach to conduct an analysis of beam-column elements with generalized end-boundary conditions on a homogeneous or non-homogeneous Pasternak elastic foundation. The mathematical formulation utilized herein is that presented by the senior author in a recent work. The differential equation (DE) governing the behavior of the beam-column element is solved using the differential transformation method (DTM). The DTM offers practical advantages over other conventional approaches when solving the proposed structural model. The proposed formulation provides the flexibility to account for i) combined lateral and axial load at the ends of the element, ii) homogeneous or non-homogeneous soil, iii) Pasternak elastic foundation, and iv) an external arbitrary transverse load acting on the element. The effects of various slenderness ratios, pile-soil stiffness ratios, and classical and semirigid boundary conditions can be easily studied with the proposed formulation. Examples are presented to validate the accuracy of the model and its applicability over a wide range of analyses.


Sign in / Sign up

Export Citation Format

Share Document