scholarly journals ANALYSIS AND DESIGN OF STRUCTURAL STEEL JOINTS AND CONNECTION: SOFTWARE IMPLEMENTATION

Author(s):  
Viktor Karpilovsky ◽  
Eduard Kriksunov ◽  
Anatoly Perelmuter ◽  
Vitalina Yurchenko

The paper presents COMET software which enables to design steel structural joints widely used in civil and industrial engineering. Algorithm for designing each joint prototype has been presented as a set of operations implementing the rules for determining the interrelated values of the joint parameters. Each prototype is developed as an independent program that performs a full cycle of designing the joint and verification of the joint parameters according to the specified design codes. Searching of unknown joint parameters has been transformed to a decision making problem based on analysis of the joint mathematical model. Automatic searching of unknown joint parameters has been implemented as a multiple targeted improvement of a certain initial joint design in order to satisfy load-carrying capacity constraints taking into account the structural and assortment-based constraints. Multiple improvement of current joint design is performed on the basis of sensitivity analysis relative to variation of governing joint parameters.

Author(s):  
Sarah Jaber ◽  
Mounir Mabsout ◽  
Kassim Tarhini

Bridge specifications do not consider the effect of parapet stiffness in the analysis and design of reinforced concrete slab bridges. This paper performs a parametric investigation using finite element analysis (FEA) to study the effects of parapet stiffness on live load-carrying capacity of two-span, three-and four-lane concrete slab bridges. This study analyzed 96 highway bridge cases with varied parameters such as span-length, bridge width, and parapet stiffness within practical ranges. Reinforced concrete parapets or railings, built integrally with the bridge deck, were placed on one and/or both sides of bridge deck. The longitudinal bending moments calculated using the FEA results were compared with reference bridge cases without parapets, as well as AASHTO Standard and LRFD specifications. The FEA results presented in this paper showed that the presence of concrete parapets reduces the negative bending moments by 15% to 60% and the positive bending moments by 10% to 45%. The reduction in longitudinal bending moments can mean an increase in the load-carrying capacity of such bridges depending on the parapet stiffness. This investigation can assist engineers in modeling the actual bridge geometry more accurately for estimating the load-carrying capacity of existing concrete bridges. Hence, new bridges can be designed by considering the presence of concrete parapets. Parapets can be used as an alternative for strengthening existing one and two-span reinforced concrete slab bridges.


2002 ◽  
Vol 5 (2) ◽  
pp. 75-85 ◽  
Author(s):  
G. N. Ronghe ◽  
L. M. Gupta

The concept of prestressing steel structures has only recently been widely considered, despite a long and successful history of prestressing concrete members. Several analytical studies of prestressed steel plate girder were reported in the literature, but much of that work was not studied with reference to different parameters like tendon profile, eccentricity, partial span to full span ratio, prestressing force, load carrying capacity etc. associated with prestressing. This paper examines analytically a comparative study of various tendon configurations and prestressing parameters on over all analysis and design of prestressed steel plate girder. The output from the computer Program for analysis and design of steel plate girder prestressed with different tendon configurations are compared among each other. As a Case-study, a prototype model of Prestressed Steel Testing Frame with straight tendon has been designed, constructed and tested in the laboratory for its safe load carrying capacity and maximum deflection.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Wei He ◽  
Bing Fu ◽  
Feng-Chen An

The FRP-confined concrete-encased steel column is a new form of hybrid column, which integrates advantages of all the constituent materials. Its structural performance, including load carrying capacity, ductility, and corrosion resistance, has been demonstrated to be excellent by limited experimental investigation. Currently, no systematic procedure, particularly for that with reinforced structural steel of arbitrary shapes, has been proposed for the sectional analysis and design for such novel hybrid columns under biaxial loading. The present paper aims at filling this research gap by proposing an approach for the rapid section analysis and providing rationale basis for FRP-confined concrete-encased arbitrarily shaped steel columns. A robust iterative scheme has been used with a traditional so-called fiber element method. The presented numerical examples demonstrated the validity and accuracy of the proposed approach.


Author(s):  
David Mikolášek ◽  
Antonín Lokaj ◽  
Jiří Brožovský ◽  
Oldřich Sucharda

Abstract The paper analyses a drawn steel joint in round logs for which several types of reinforcements have been proposed. The load-carrying capacity of the reinforcements have been tested in laboratories. At the same time, numerical modelling has been performed - it has focused, in particular, on rigidity of the joints during the loading process. Physical and geometrical nonlinearities have been taken into account. The Finite Element Method and 3D computation models have been used in the numerical calculations.


2018 ◽  
Vol 146 ◽  
pp. 02001
Author(s):  
Pavol Juhas

The load-carrying capacity of steel structures and members subjected mostly to bending depends in large measure on local stability of their compressed flanges and bending webs in decided cross-sections and areas. Depending on local stability, the elastic or plastic, eventually the elastic-plastic analysis and design can be applied. The actual standards for design of steel structures contain relatively detailed rules for elastic analysis by the elastic theory and for plastic analysis by the plastic theory. The elastic-plastic analysis and design of steel members are meanwhile still problematic from theory, standard and application point of view. The real elastic-plastic behavior of the steel members is complicated strength and stability problem. Therefore, the representative experimental knowledge and results about the real elastic-plastic behavior and mechanisms of failure of the steel members have been very important from the scientific and applied aspects. The author of paper realized in previous time the wide experimental research within the range of this intention. The paper contains selected knowledge and results of the previous experimental-theoretical investigation of the elastic-plastic local stability of the steel members subjected mostly to bending. The adequate slenderness – strain relation and methodology for practical calculation of the elastic-plastic bending load-carrying capacity of the steel cross-sections and members are presented in the paper.


2005 ◽  
Vol 10 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. Kala ◽  
Z. Kala

Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme.


2005 ◽  
Vol 10 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Z. Kala

The load-carrying capacity of the member with imperfections under axial compression is analysed in the present paper. The study is divided into two parts: (i) in the first one, the input parameters are considered to be random numbers (with distribution of probability functions obtained from experimental results and/or tolerance standard), while (ii) in the other one, the input parameters are considered to be fuzzy numbers (with membership functions). The load-carrying capacity was calculated by geometrical nonlinear solution of a beam by means of the finite element method. In the case (ii), the membership function was determined by applying the fuzzy sets, whereas in the case (i), the distribution probability function of load-carrying capacity was determined. For (i) stochastic solution, the numerical simulation Monte Carlo method was applied, whereas for (ii) fuzzy solution, the method of the so-called α cuts was applied. The design load-carrying capacity was determined according to the EC3 and EN1990 standards. The results of the fuzzy, stochastic and deterministic analyses are compared in the concluding part of the paper.


2005 ◽  
Vol 33 (4) ◽  
pp. 210-226 ◽  
Author(s):  
I. L. Al-Qadi ◽  
M. A. Elseifi ◽  
P. J. Yoo ◽  
I. Janajreh

Abstract The objective of this study was to quantify pavement damage due to a conventional (385/65R22.5) and a new generation of wide-base (445/50R22.5) tires using three-dimensional (3D) finite element (FE) analysis. The investigated new generation of wide-base tires has wider treads and greater load-carrying capacity than the conventional wide-base tire. In addition, the contact patch is less sensitive to loading and is especially designed to operate at 690kPa inflation pressure at 121km/hr speed for full load of 151kN tandem axle. The developed FE models simulated the tread sizes and applicable contact pressure for each tread and utilized laboratory-measured pavement material properties. In addition, the models were calibrated and properly validated using field-measured stresses and strains. Comparison was established between the two wide-base tire types and the dual-tire assembly. Results indicated that the 445/50R22.5 wide-base tire would cause more fatigue damage, approximately the same rutting damage and less surface-initiated top-down cracking than the conventional dual-tire assembly. On the other hand, the conventional 385/65R22.5 wide-base tire, which was introduced more than two decades ago, caused the most damage.


2020 ◽  
Vol 38 (5A) ◽  
pp. 669-680
Author(s):  
Ghazwan K. Mohammed ◽  
Kaiss F. Sarsam ◽  
Ikbal N. Gorgis

The study deals with the effect of using Slurry infiltrated fiber concrete (SIFCON) with the reinforced concrete beams to explore its enhancement to the flexural capacity. The experimental work consists of the casting of six beams, two beams were fully cast by conventional concrete (CC) and SIFCON, as references. While the remaining was made by contributing a layer of SIFCON diverse in-depth and position, towards complete the overall depths of the built-up beam with conventional concrete CC. Also, an investigation was done through the control specimens testing about the mechanical properties of SIFCON. The results showed a stiffer behavior with a significant increase in load-carrying capacity when SIFCON used in tension zones. Otherwise high ductility and energy dissipation appeared when SIFCON placed in compression zones with a slight increment in ultimate load. The high volumetric ratio of steel fibers enabled SIFCON to magnificent tensile properties.


Sign in / Sign up

Export Citation Format

Share Document