scholarly journals Spinor field in a spherically symmetric Friedmann Universe

Author(s):  
Saha Bijan ◽  
Evgeniy I. Zakharov ◽  
Victor S. Rikhvitsky

In recent years spinor field is being used by many authors to address some burning issues of modern cosmology. The motive behind using the spinor field as a source for gravitational field lies on the fact that the spinor field not only can describe the different era of the evolution but also can simulate different substances such as perfect fluid and dark energy. Moreover, the spinor field is very sensitive to the gravitational one and depending on the gravitational field the spinor field can react differently and change the spacetime geometry and the spinor field itself differently. This paper provides a brief description of the nonlinear spinor field in the FriedmannLemaitre-Robertson-Walker (FLRW) model. The results are compared in Cartesian and spherical coordinates. It is shown that during the transition from Cartesian coordinates to spherical ones, the energy-momentum tensor acquires additional nonzero non-diagonal components that can impose restrictions on either spinor functions or metric ones.

Universe ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. 152
Author(s):  
Bijan Saha

We studied the behavior of nonlinear spinor field within the scope of a static cylindrically symmetric space–time. It is found that the energy-momentum tensor (EMT) of the spinor field in this case possesses nontrivial non-diagonal components. The presence of non-diagonal components of the EMT imposes three-way restrictions either on the space–time geometry or on the components of the spinor field or on both. It should be noted that the analogical situation occurs in cosmology when the nonlinear spinor field is exploited as a source of gravitational field given by the Bianchi type-I cosmological model.


Author(s):  
D. W. Sciama

ABSTRACTIt is suggested, on heuristic grounds, that the energy-momentum tensor of a material field with non-zero spin and non-zero rest-mass should be non-symmetric. The usual relationship between energy-momentum tensor and gravitational potential then implies that the latter should also be a non-symmetric tensor. This suggestion has nothing to do with unified field theory; it is concerned with the pure gravitational field.A theory of gravitation based on a non-symmetric potential is developed. Field equations are derived, and a study is made of Rosenfeld identities, Bianchi identities, angular momentum and the equations of motion of test particles. These latter equations represent the geodesics of a Riemannian space whose contravariant metric tensor is gij–, in agreement with a result of Lichnerowicz(9) on the bicharacteristics of the Einstein–Schrödinger field equations.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Zahra Haghani ◽  
Tiberiu Harko

AbstractWe generalize and unify the $$f\left( R,T\right) $$ f R , T and $$f\left( R,L_m\right) $$ f R , L m type gravity models by assuming that the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R, of the trace of the energy–momentum tensor T, and of the matter Lagrangian $$L_m$$ L m , so that $$ L_{grav}=f\left( R,L_m,T\right) $$ L grav = f R , L m , T . We obtain the gravitational field equations in the metric formalism, the equations of motion for test particles, and the energy and momentum balance equations, which follow from the covariant divergence of the energy–momentum tensor. Generally, the motion is non-geodesic, and takes place in the presence of an extra force orthogonal to the four-velocity. The Newtonian limit of the equations of motion is also investigated, and the expression of the extra acceleration is obtained for small velocities and weak gravitational fields. The generalized Poisson equation is also obtained in the Newtonian limit, and the Dolgov–Kawasaki instability is also investigated. The cosmological implications of the theory are investigated for a homogeneous, isotropic and flat Universe for two particular choices of the Lagrangian density $$f\left( R,L_m,T\right) $$ f R , L m , T of the gravitational field, with a multiplicative and additive algebraic structure in the matter couplings, respectively, and for two choices of the matter Lagrangian, by using both analytical and numerical methods.


Author(s):  
Z. Yousaf ◽  
M. Z. Bhatti

We explore the aspects of the electromagnetism on the stability of gravastar in a particular modified theory, i.e. [Formula: see text] where [Formula: see text], [Formula: see text] is the Ricci scalar and [Formula: see text] is the trace of energy–momentum tensor. We assume a spherically symmetric static metric coupled comprising of perfect fluid in the presence of electric charge. The purpose of this paper is to extend the results of [S. Ghosh, F. Rahaman, B. K. Guha and S. Ray, Phys. Lett. B 767 (2017) 380.] to highlight the effects of [Formula: see text] gravity in the formation of charged gravastars. We demonstrated the mathematical formulation, utilizing different equations of state, for the three respective regions (i.e. inner, shell, exterior) of the gravastar. We have matched smoothly the interior de Sitter and the exterior Reissner–Nordström metric at the hypersurface. At the end we extracted few conclusions by working on the physical features of the charged gravastar, mathematically and graphically.


2019 ◽  
Vol 28 (16) ◽  
pp. 2040004
Author(s):  
M. Sharif ◽  
Sobia Sadiq

This paper formulates the exact static anisotropic spherically symmetric solution of the field equations through gravitational decoupling. To accomplish this work, we add a new gravitational source in the energy–momentum tensor of a perfect fluid. The corresponding field equations, hydrostatic equilibrium equation as well as matching conditions are evaluated. We obtain the anisotropic model by extending the known Durgapal and Gehlot isotropic solution and examined the physical viability as well as the stability of the developed model. It is found that the system exhibits viable behavior for all fluid variables as well as energy conditions and the stability criterion is fulfilled.


2009 ◽  
Vol 24 (19) ◽  
pp. 1533-1542 ◽  
Author(s):  
M. SHARIF ◽  
KHADIJA IQBAL

In this paper, we discuss gravitational collapse of spherically symmetric spacetimes. We derive a general formalism by taking two arbitrary spherically symmetric spacetimes with g00 = 1. Israel's junction conditions are used to develop this formalism. The formulas for extrinsic curvature tensor are obtained. The general form of the surface energy–momentum tensor depending on extrinsic curvature tensor components is derived. This leads us to the surface energy density and the tangential pressure. The formalism is applied to two known spherically symmetric spacetimes. The results obtained show the regions for the collapse and expansion of the shell.


Sign in / Sign up

Export Citation Format

Share Document