scholarly journals Spinors in Cylindrically Symmetric Space–Time

Universe ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. 152
Author(s):  
Bijan Saha

We studied the behavior of nonlinear spinor field within the scope of a static cylindrically symmetric space–time. It is found that the energy-momentum tensor (EMT) of the spinor field in this case possesses nontrivial non-diagonal components. The presence of non-diagonal components of the EMT imposes three-way restrictions either on the space–time geometry or on the components of the spinor field or on both. It should be noted that the analogical situation occurs in cosmology when the nonlinear spinor field is exploited as a source of gravitational field given by the Bianchi type-I cosmological model.

2018 ◽  
Vol 96 (10) ◽  
pp. 1074-1084
Author(s):  
Bijan Saha

Within the scope of Bianchi type-IX cosmological model we have studied the role of spinor field in the evolution of the Universe. It is found that unlike the diagonal Bianchi models in this case the components of energy–momentum tensor of spinor field along the principal axis are not the same (i.e., [Formula: see text]), even in the absence of spinor field nonlinearity. The presence of nontrivial non-diagonal components of energy–momentum tensor of the spinor field imposes severe restrictions both on geometry of space–time and on the spinor field itself. As a result the space–time turns out to be either locally rotationally symmetric or isotropic. In this paper we considered the Bianchi type-IX space–time both for a trivial b, that corresponds to standard Bianchi type-IX and the one with a non-trivial b. It was found that a positive self-coupling constant λ1 gives rise to an oscillatory mode of expansion, while a trivial λ1 leads to rapid expansion at the early stage of evolution.


Author(s):  
Saha Bijan ◽  
Evgeniy I. Zakharov ◽  
Victor S. Rikhvitsky

In recent years spinor field is being used by many authors to address some burning issues of modern cosmology. The motive behind using the spinor field as a source for gravitational field lies on the fact that the spinor field not only can describe the different era of the evolution but also can simulate different substances such as perfect fluid and dark energy. Moreover, the spinor field is very sensitive to the gravitational one and depending on the gravitational field the spinor field can react differently and change the spacetime geometry and the spinor field itself differently. This paper provides a brief description of the nonlinear spinor field in the FriedmannLemaitre-Robertson-Walker (FLRW) model. The results are compared in Cartesian and spherical coordinates. It is shown that during the transition from Cartesian coordinates to spherical ones, the energy-momentum tensor acquires additional nonzero non-diagonal components that can impose restrictions on either spinor functions or metric ones.


2018 ◽  
Vol 173 ◽  
pp. 02018
Author(s):  
Bijan Saha

Within the scope of the non-diagonal Bianchi cosmological models we have studied the role of the spinor field in the evolution of the Universe. In the non-diagonal Bianchi models the spinor field distribution along the main axis is anisotropic and does not vanish in the absence of the spinor field nonlinearity. Hence within these models perfect fluid, dark energy etc. cannot be simulated by the spinor field nonlinearity. The equation for volume scale V in the case of non-diagonal Bianchi models contains a term with first derivative of V explicitly and does not allow exact solution by quadratures. Like the diagonal models the non-diagonal Bianchi space-time becomes locally rotationally symmetric even in the presence of a spinor field. It was found that depending on the sign of the coupling constant the model allows either an open Universe that rapidly grows up or a close Universe that ends in a Big Crunch singularity.


2017 ◽  
Vol 14 (04) ◽  
pp. 1750053 ◽  
Author(s):  
Saeed Nayeh ◽  
Mehrdad Ghominejad

In this paper, we obtain the field equations of Weyl static axially symmetric space-time in the framework of [Formula: see text] gravity, where [Formula: see text] is torsion scalar. We will see that, for [Formula: see text] related to teleparallel equivalent general relativity, these equations reduce to Einstein field equations. We show that if the components of energy–momentum tensor are symmetric, the scalar torsion must be either constant or only a function of radial component [Formula: see text]. The solutions of some functions [Formula: see text] in which [Formula: see text] is a function of [Formula: see text] are obtained.


2015 ◽  
Vol 30 (25) ◽  
pp. 1550147
Author(s):  
Yoshinobu Habara ◽  
Holger B. Nielsen ◽  
Masao Ninomiya

We rederive in a physical manner the Weyl anomaly in two-dimensional space–time by considering the Dirac Sea. It is regularized by some bosonic extra species which are formally negatively counted. In fact, we calculate the trace of the energy–momentum tensor in the Dirac Sea in presence of background gravitational field. It has to be regularized, since the Dirac Sea is bottomless and thus causes divergence. The new regularization method consists in adding various massive bosonic species some of which are to be counted negative in the Dirac Sea. The mass terms in the Lagrangian of the regularization fields have a dependence on the background gravitational field.


Author(s):  
Kalyani Desikan

A study of Bianchi Type I cosmological model is undertaken in the framework of creation of particles. To accommodate the creation of new particles, the universe is regarded as an Open thermodynamical system. The energy conservation equation is modified with the incorporation of a creation pressure in the energy momentum tensor. Exact solutions of the field equations are obtained (i) for a particular choice of the particle creation function and (ii) by considering the deceleration parameter to be constant. In the first model the behavior of the solution at late times is investigated. The physical aspects of the model have also been discussed. In the case of the second model we have restricted our analysis to the power law behaviour for the average scale factor. This leads to a particular form for the particle creation function. The behavior of the solution is investigated and the physical aspects of the model have also been discussed for the matter dominated era.


Sign in / Sign up

Export Citation Format

Share Document