scholarly journals The Roles of H2S Gas in Behavior of Carbon Steel Corrosion in Oil and Gas Environment: A Review

2018 ◽  
Vol 7 (1) ◽  
pp. 37 ◽  
Author(s):  
Yuli Panca Asmara

Hydrogen sulfide (H2S) is the most dangerous element which exists in oil and gas reservoir. H2S acidifies water which causes pitting corrosion to carbon steel pipelines. Corrosion reaction will increase fast when it combines with oxygen and carbon dioxide (CO2). Thus, they can significantly reduce service life of transportation pipelines and processing facilities in oil and gas industries. Understanding corrosion mechanism of H2S is crucial to study since many severe deterioration of carbon steels pipelines found in oil and gas industries facilities. To investigate H2S corrosion accurately, it requires studying physical, electrical and chemical properties of the environment. This paper concentrates, especially, on carbon steel corrosion caused by H2S gas. How this gas reacts with carbon steel in oil and gas reservoir is also discussed. This paper also reviews the developments of corrosion prediction software of H2S corrosion. The corrosion mechanism of H2S combined with CO2 gas is also in focused. 

2015 ◽  
Vol 33 (3-4) ◽  
pp. 151-174 ◽  
Author(s):  
Liang Wei ◽  
Yucheng Zhang ◽  
Xiaolu Pang ◽  
Kewei Gao

AbstractCarbon dioxide (CO2) corrosion at low partial pressure has been widely recognized, but research on supercritical CO2 (SC CO2) corrosion is very limited. By far, investigations on steel corrosion under SC CO2 conditions have mainly focused on the corrosion rate, structure, morphology, and composition of the corrosion scales as well as the electrochemical behaviors. It was found in aqueous SC CO2 environment, that the corrosion rate of carbon steel was very high, and even stainless steels (13Cr and high-alloy CrNi steels) were subjected to some corrosion. Inhibitor could reduce the corrosion rate of carbon steels and stainless steels, but none of the tested inhibitors could reduce the corrosion rate of carbon steel to an acceptable value. Impurities such as O2, SO2, and NO2 and their mixtures in SC CO2 increased the corrosion rate of carbon steel. However, the existing studies so far were very limited on the corrosion mechanism of steels in SC CO2 conditions. Thus, this paper first reviews the finding on the corrosion behaviors of steels under SC CO2 conditions, points out the shortcomings in the present investigations and finally looks forward to the research prospects on SC CO2 corrosion.


2018 ◽  
Vol 3 (1) ◽  
pp. 64
Author(s):  
Y P Asmara ◽  
Tedi Kurniawan

Corrosion predictions are essential for corrosion and material engineers. It is used to prepare pre-Front End Engineering Design (pre-FEED). FEED guides to select appropriate materials, planning test schedule, work over management, and estimate future repair for cost analyses. Corrosion predictions also calculate life of pipeline and equipment systems during operational stages. As oil and gas environments are corrosive for carbon steel, it is important to account the corrosion rate of carbon steels in those environmental conditions. There are many existing corrosion predictions software, which are available in oil and gas industries. However, corrosion predictions only can be used for particular ranges of environmental conditions because they use different input parameters. To select the most applicable of corrosion predictions software, engineers have to understand theoretical background and fundamental concept of the software. This paper reviews the applications of existing corrosion prediction software in calculating corrosion rate of carbon steel in oil and gas environmental systems. The concept philosophy of software is discussed. Parameters used and range of conditions are also studied. From the results of studies, there are limitations and beneficial impacts in using corrosion software. Engineers should understand the fundamental theories of the corrosion mechanism. Knowing limitations of the models, the appropriate model can be correctly selected and interpretation of corrosion rate will close to the real data conditions.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012079
Author(s):  
S B Gjertsen ◽  
A Palencsar ◽  
M Seiersten ◽  
T H Hemmingsen

Abstract Models for predicting top-of-line corrosion (TLC) rates on carbon steels are important tools for cost-effectively designing and operating natural gas transportation pipelines. The work presented in this paper is aimed to investigate how the corrosion rates on carbon steel is affected by acids typically present in the transported pipeline fluids. This investigation may contribute to the development of improved models. In a series of experiments, the corrosion rate differences for pure CO2 (carbonic acid) corrosion and pure organic acid corrosion (acetic acid and formic acid) on X65 carbon steel were investigated at starting pH values; 4.5, 5.3, or 6.3. The experiments were conducted in deaerated low-salinity aqueous solutions at atmospheric pressure and temperature of 65 °C. The corrosion rates were evaluated from linear polarization resistance data as well as mass loss and released iron concentration. A correlation between lower pH values and increased corrosion rates was found for the organic acid experiments. However, the pH was not the most critical factor for the rates of carbon steel corrosion in these experiments. The experimental results showed that the type of acid species involved and the concentration of the undissociated acid in the solution influenced the corrosion rates considerably.


Sign in / Sign up

Export Citation Format

Share Document