Using Bayesian inference to improve three-dimensional atomic reconstructions from a single projection using Z-contrast imaging

2021 ◽  
Author(s):  
Annick De Backer ◽  
2001 ◽  
Vol 7 (S2) ◽  
pp. 1102-1103
Author(s):  
Judith C. Yang ◽  
Erin Devlin ◽  
William Rhodes ◽  
Steven Bradley

A vital component to nanoparticle science will be the three dimensional (3-D) characterization of both structure and chemistry of these nanoparticles on their supports at the nanometer scale and below. to achieve this goal, quantitative Z-contrast and atomic resolution will provide essential information about their structure. Z-contrast imaging is ideal for imaging these large Z nanoparticles on low Z supports. in this proceedings, we present a quantitative Z-contrast method to determine number of atoms and a few examples of a combination of electron microscopy methods to gain structural insights into supported nanoparticle, such as Pt on different support materials, PtRu5 on C and Pt-Sn on SiO2.A relatively new and powerful method is to determine the number of atoms in a nanoparticle, by very high angle annular dark-field (HAADF) imaging or Z-contrast technique [1, 2]. We have shown that quantification of the absolute image intensity from very HAADF microscopy will provide the number of atoms in very small particles of high atomic number to ±2 atoms for Re6 nanoparticles supported on carbon [3].


1996 ◽  
Vol 466 ◽  
Author(s):  
E. C. Dickey ◽  
V. P. Dra Vid ◽  
S. J. Pennycook ◽  
P. D. Nellist ◽  
D. J. Wallis

ABSTRACTA case study is presented in which HREM, Z-Contrast Imaging and EELS are used as complementary techniques for elucidating interface structure. The NiO-ZrO2(cubic) interface is investigated along two orthogonal directions by these electron imaging and spectroscopy techniques to reveal the three-dimensional interface structure. Based on findings from this study, a protocol is suggested for using all three experimental techniques to gain a thorough understanding of interface structures.


Nanoscale ◽  
2017 ◽  
Vol 9 (25) ◽  
pp. 8791-8798 ◽  
Author(s):  
A. De Backer ◽  
L. Jones ◽  
I. Lobato ◽  
T. Altantzis ◽  
B. Goris ◽  
...  

2005 ◽  
Vol 876 ◽  
Author(s):  
Huiping Xu ◽  
Laurent Menard ◽  
Anatoly Frenkel ◽  
Ralph Nuzzo ◽  
Duane Johnson ◽  
...  

AbstractOur direct density function-based simulations of Ru-, Pt- and mixed Ru-Pt clusters on carbon-based supports reveal that substrates can mediate the PtRu5 particles [1]. Oblate structure of PtRu5 on C has been found [2]. Nevertheless, the cluster-substrate interface interactions are still unknown. In this work, we present the applications of combinations of quantitative z-contrast imaging and high resolution electron microscopy in investigating the effect of different substrates and ligand shells on metal particles. Specifically, we developed a relatively new and powerful method to determine numbers of atoms in a nanoparticle as well as three-dimensional structures of particles including size and shape of particles on the substrates by very high angle (~96mrad) annular dark-field (HAADF) imaging [2-4] techniques. Recently, we successfully synthesize icosahedra Au13 clusters with mixed ligands and cuboctahedral Au13 cores with thiol ligands, which have been shown by TEM to be of sub-nanometer size (0.84nm) and highly monodisperse narrow distribution. X-ray absorption and UV-visible spectra indicate many differences between icosahedra and cuboctahedral Au13 cores. Particles with different ligands show different emissions and higher quantum efficiency has been found in Au11 (PPH3) SC12)2C12. We plan to deposit those ligands-protected gold clusters onto different substrates, such as, TiO2 and graphite, etc. Aforementioned analysis procedure will be performed for those particles on the substrates and results will be correlated with that of our simulations and activity properties. This approach will lead to an understanding of the cluster-substrates relationship for consideration in real applications.


Author(s):  
K. N. Colonna ◽  
G. Oliphant

Harmonious use of Z-contrast imaging and digital image processing as an analytical imaging tool was developed and demonstrated in studying the elemental constitution of human and maturing rabbit spermatozoa. Due to its analog origin (Fig. 1), the Z-contrast image offers information unique to the science of biological imaging. Despite the information and distinct advantages it offers, the potential of Z-contrast imaging is extremely limited without the application of techniques of digital image processing. For the first time in biological imaging, this study demonstrates the tremendous potential involved in the complementary use of Z-contrast imaging and digital image processing.Imaging in the Z-contrast mode is powerful for three distinct reasons, the first of which involves tissue preparation. It affords biologists the opportunity to visualize biological tissue without the use of heavy metal fixatives and stains. For years biologists have used heavy metal components to compensate for the limited electron scattering properties of biological tissue.


Author(s):  
Z. L. Wang ◽  
J. Bentley

The success of obtaining atomic-number-sensitive (Z-contrast) images in scanning transmission electron microscopy (STEM) has shown the feasibility of imaging composition changes at the atomic level. This type of image is formed by collecting the electrons scattered through large angles when a small probe scans across the specimen. The image contrast is determined by two scattering processes. One is the high angle elastic scattering from the nuclear sites,where ϕNe is the electron probe function centered at bp = (Xp, yp) after penetrating through the crystal; F denotes a Fourier transform operation; D is the detection function of the annular-dark-field (ADF) detector in reciprocal space u. The other process is thermal diffuse scattering (TDS), which is more important than the elastic contribution for specimens thicker than about 10 nm, and thus dominates the Z-contrast image. The TDS is an average “elastic” scattering of the electrons from crystal lattices of different thermal vibrational configurations,


Author(s):  
S. J. Pennycook

Using a high-angle annular detector on a high-resolution STEM it is possible to form incoherent images of a crystal lattice characterized by strong atomic number or Z contrast. Figure 1 shows an epitaxial Ge film on Si(100) grown by oxidation of Ge-implanted Si. The image was obtained using a VG Microscopes' HB501 STEM equipped with an ultrahigh resolution polepiece (Cs ∽1.2 mm, demonstrated probe FWHM intensity ∽0.22 nm). In both crystals the lattice is resolved but that of Ge shows much brighter allowing the interface to be located exactly and interface steps to be resolved (arrowed). The interface was indistinguishable in the phase-contrast STEM image from the same region, and even at higher resolution the location of the interface is complex. Figure 2 shows a thin region of an MBE-grown ultrathin super-lattice (Si8Ge2)100. The expected compositional modulation would show as one bright row of dots from the 2 Ge monolayers separated by 4 rows of lighter Si columns. The image shows clearly that strain-induced interdiffusion has occurred on the monolayer scale.


Author(s):  
S. J. Pennycook ◽  
P. D. Nellist ◽  
N. D. Browning ◽  
P. A. Langjahr ◽  
M. Rühle

The simultaneous use of Z-contrast imaging with parallel detection EELS in the STEM provides a powerful means for determining the atomic structure of grain boundaries. The incoherent Z-contrast image of the high atomic number columns can be directly inverted to their real space arrangement, without the use of preconceived structure models. Positions and intensities may be accurately quantified through a maximum entropy analysis. Light elements that are not visible in the Z-contrast image can be studied through EELS; their coordination polyhedra determined from the spectral fine structure. It even appears feasible to contemplate 3D structure refinement through multiple scattering calculations.The power of this approach is illustrated by the recent study of a series of SrTiC>3 bicrystals, which has provided significant insight into some of the basic issues of grain boundaries in ceramics. Figure 1 shows the structural units deduced from a set of 24°, 36° and 65° symmetric boundaries, and 24° and 45° asymmetric boundaries. It can be seen that apart from unit cells and fragments from the perfect crystal, only three units are needed to construct any arbitrary tilt boundary. For symmetric boundaries, only two units are required, each having the same Burgers, vector of a<100>. Both units are pentagons, on either the Sr or Ti sublattice, and both contain two columns of the other sublattice, imaging in positions too close for the atoms in each column to be coplanar. Each column was therefore assumed to be half full, with the pair forming a single zig-zag column. For asymmetric boundaries, crystal geometry requires two types of dislocations; the additional unit was found to have a Burgers’ vector of a<110>. Such a unit is a larger source of strain, and is especially important to the transport characteristics of cuprate superconductors. These zig-zag columns avoid the problem of like-ion repulsion; they have also been seen in TiO2 and YBa2Cu3O7-x and may be a general feature of ionic materials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Yin ◽  
Hongxiang Zong ◽  
Hong Tao ◽  
Xuefei Tao ◽  
Haijun Wu ◽  
...  

AbstractMultitudinous topological configurations spawn oases of many physical properties and phenomena in condensed-matter physics. Nano-sized ferroelectric bubble domains with various polar topologies (e.g., vortices, skyrmions) achieved in ferroelectric films present great potential for valuable physical properties. However, experimentally manipulating bubble domains has remained elusive especially in the bulk form. Here, in any bulk material, we achieve self-confined bubble domains with multiple polar topologies in bulk Bi0.5Na0.5TiO3 ferroelectrics, especially skyrmions, as validated by direct Z-contrast imaging. This phenomenon is driven by the interplay of bulk, elastic and electrostatic energies of coexisting modulated phases with strong and weak spontaneous polarizations. We demonstrate reversable and tip-voltage magnitude/time-dependent donut-like domain morphology evolution towards continuously and reversibly modulated high-density nonvolatile ferroelectric memories.


Sign in / Sign up

Export Citation Format

Share Document