Interactions of optical microresonators with free-electrons in an ultrafast TEM

2021 ◽  
Author(s):  
Ofer Kfir ◽  
Author(s):  
C. Hayzelden ◽  
J. L. Batstone

Epitaxial reordering of amorphous Si(a-Si) on an underlying single-crystal substrate occurs well below the melt temperature by the process of solid phase epitaxial growth (SPEG). Growth of crystalline Si(c-Si) is known to be enhanced by the presence of small amounts of a metallic phase, presumably due to an interaction of the free electrons of the metal with the covalent Si bonds near the growing interface. Ion implantation of Ni was shown to lower the crystallization temperature of an a-Si thin film by approximately 200°C. Using in situ transmission electron microscopy (TEM), precipitates of NiSi2 formed within the a-Si film during annealing, were observed to migrate, leaving a trail of epitaxial c-Si. High resolution TEM revealed an epitaxial NiSi2/Si(l11) interface which was Type A. We discuss here the enhanced nucleation of c-Si and subsequent silicide-mediated SPEG of Ni-implanted a-Si.Thin films of a-Si, 950 Å thick, were deposited onto Si(100) wafers capped with 1000Å of a-SiO2. Ion implantation produced sharply peaked Ni concentrations of 4×l020 and 2×l021 ions cm−3, in the center of the films.


1990 ◽  
Vol 160 (1) ◽  
pp. 157 ◽  
Author(s):  
Vladimir B. Braginskii ◽  
V.S. Il'chenko ◽  
M.L. Gorodetskii

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
María Taeño ◽  
David Maestre ◽  
Ana Cremades

Abstract Nickel oxide (NiO) is one of the very few p-type semiconducting oxides, the study of which is gaining increasing attention in recent years due to its potential applicability in many emerging fields of technological research. Actually, a growing number of scientific works focus on NiO-based electrochromic devices, high-frequency spintronics, fuel cell electrodes, supercapacitors, photocatalyst, chemical/gas sensors, or magnetic devices, among others. However, less has been done so far in the development of NiO-based optical devices, a field in which this versatile transition metal oxide still lags in performance despite its potential applicability. This review could contribute with novelty and new forefront insights on NiO micro and nanostructures with promising applicability in optical and optoelectronic devices. As some examples, NiO lighting devices, optical microresonators, waveguides, optical limiters, and neuromorphic applications are reviewed and analyzed in this work. These emerging functionalities, together with some other recent developments based on NiO micro and nanostructures, can open a new field of research based on this p-type material which still remains scarcely explored from an optical perspective, and would pave the way to future research and scientific advances.


2021 ◽  
Vol 7 (11) ◽  
pp. eabe4270 ◽  
Author(s):  
A. Ben Hayun ◽  
O. Reinhardt ◽  
J. Nemirovsky ◽  
A. Karnieli ◽  
N. Rivera ◽  
...  

It is a long-standing goal to create light with unique quantum properties such as squeezing and entanglement. We propose the generation of quantum light using free-electron interactions, going beyond their already ubiquitous use in generating classical light. This concept is motivated by developments in electron microscopy, which recently demonstrated quantum free-electron interactions with light in photonic cavities. Such electron microscopes provide platforms for shaping quantum states of light through a judicious choice of the input light and electron states. Specifically, we show how electron energy combs implement photon displacement operations, creating displaced-Fock and displaced-squeezed states. We develop the theory for consecutive electron-cavity interactions with a common cavity and show how to generate any target Fock state. Looking forward, exploiting the degrees of freedom of electrons, light, and their interaction may achieve complete control over the quantum state of the generated light, leading to novel light statistics and correlations.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Andreas Ø. Svela ◽  
Jonathan M. Silver ◽  
Leonardo Del Bino ◽  
Shuangyou Zhang ◽  
Michael T. M. Woodley ◽  
...  

AbstractAs light propagates along a waveguide, a fraction of the field can be reflected by Rayleigh scatterers. In high-quality-factor whispering-gallery-mode microresonators, this intrinsic backscattering is primarily caused by either surface or bulk material imperfections. For several types of microresonator-based experiments and applications, minimal backscattering in the cavity is of critical importance, and thus, the ability to suppress backscattering is essential. We demonstrate that the introduction of an additional scatterer into the near field of a high-quality-factor microresonator can coherently suppress the amount of backscattering in the microresonator by more than 30 dB. The method relies on controlling the scatterer position such that the intrinsic and scatterer-induced backpropagating fields destructively interfere. This technique is useful in microresonator applications where backscattering is currently limiting the performance of devices, such as ring-laser gyroscopes and dual frequency combs, which both suffer from injection locking. Moreover, these findings are of interest for integrated photonic circuits in which back reflections could negatively impact the stability of laser sources or other components.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 861
Author(s):  
Minako Kubo ◽  
Minako Tachiki ◽  
Terumasa Mitogawa ◽  
Kota Saito ◽  
Ryota Saito ◽  
...  

Solution-cast coating films of perchlorate-doped oligo(3-methoxythiophene) exhibited a gold-like luster similar to that of metallic gold despite the involvement of no metals. However, the development mechanism of the luster remains ambiguous. To understand the mechanism, we performed scanning electron microscopic analysis, variable-angle spectral reflectance measurements, and ellipsometry measurements on ClO4−-doped oligo(3-methoxythiophene) cast film with a gold-like luster. The results revealed that the lustrous color of the film was not induced by the submicron-sized regular structures (structural color), nor by the high-density free electrons (reflective response based on Drude model), but by the large optical constants (refractive index and extinction coefficient) of the film, as speculated previously.


Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3303-3313 ◽  
Author(s):  
Wen Jun Ding ◽  
Jeremy Zhen Jie Lim ◽  
Hue Thi Bich Do ◽  
Xiao Xiong ◽  
Zackaria Mahfoud ◽  
...  

AbstractParticle simulation has been widely used in studying plasmas. The technique follows the motion of a large assembly of charged particles in their self-consistent electric and magnetic fields. Plasmons, collective oscillations of the free electrons in conducting media such as metals, are connected to plasmas by very similar physics, in particular, the notion of collective charge oscillations. In many cases of interest, plasmons are theoretically characterized by solving the classical Maxwell’s equations, where the electromagnetic responses can be described by bulk permittivity. That approach pays more attention to fields rather than motion of electrons. In this work, however, we apply the particle simulation method to model the kinetics of plasmons, by updating both particle position and momentum (Newton–Lorentz equation) and electromagnetic fields (Ampere and Faraday laws) that are connected by current. Particle simulation of plasmons can offer insights and information that supplement those gained by traditional experimental and theoretical approaches. Specifically, we present two case studies to show its capabilities of modeling single-electron excitation of plasmons, tracing instantaneous movements of electrons to elucidate the physical dynamics of plasmons, and revealing electron spill-out effects of ultrasmall nanoparticles approaching the quantum limit. These preliminary demonstrations open the door to realistic particle simulations of plasmons.


Sign in / Sign up

Export Citation Format

Share Document