Core structure and mobility of Shockley partial dislocations in GaN by aberration-corrected HRTEM

2021 ◽  
Author(s):  
Isaak G. Vasileiadis ◽  
1983 ◽  
Vol 44 (C4) ◽  
pp. C4-37-C4-42 ◽  
Author(s):  
K. W. Lodge ◽  
A. Lapiccirella ◽  
N. Tomassini ◽  
S. L. Altmann

2017 ◽  
Vol 23 (S1) ◽  
pp. 432-433
Author(s):  
D. Hernandez-Maldonado ◽  
R. Groger ◽  
Q. M. Ramasse ◽  
P. B. Hirsch ◽  
P.D. Nellist

2002 ◽  
Vol 742 ◽  
Author(s):  
M. E. Twigg ◽  
R. E. Stahlbush ◽  
M. Fatemi ◽  
S. D. Arthur ◽  
J. B. Fedison ◽  
...  

ABSTRACTUsing site-specific plan-view transmission electron microscopy (TEM) and lightemission imaging (LEI), we have identified SFs formed during forward biasing of 4H-SiC PiN diodes. These SFs are bounded by Shockley partial dislocations and are formed by shear strain rather than by condensation of vacancies or interstitials. Detailed analysis using TEM diffraction contrast experiments reveal SFs with leading carbon-core Shockley partial dislocations as well as with the silicon-core partial dislocations observed in plastic deformation of 4H-SiC at elevated temperatures. The leading Shockley partials are seen to relieve both tensile and compressive strain during PiN diode operation, suggesting the presence of a complex and inhomogeneous strain field in the 4H-SiC layer.


2019 ◽  
Vol 126 (16) ◽  
pp. 165702 ◽  
Author(s):  
I. Belabbas ◽  
I. G. Vasileiadis ◽  
J. Moneta ◽  
J. Smalc-Koziorowska ◽  
G. P. Dimitrakopulos

1990 ◽  
Vol 213 ◽  
Author(s):  
S. R. Singh ◽  
J. M. Howe

ABSTRACTThe structure of γ/α interfaces in binary and Ta-containing TiAl alloys were analyzed by HRTEM and image simulations. Growth of α2 was found to be due to a ledge mechanism, consisting of Shockley partial dislocations on alternate (111)γ planes. The interface is atomically flat between the ledges and addition of Ta was found to transform arrays of growth ledges in the binary alloy into islands on the plate faces in the Ta-containing alloy. These islands of α2 on the γ/α2 interfaces were 4–7nm wide and increased in size with decreasing ageing temperature. The height of the ledges and islands were always a multiple of the c-parameter (0.46nm) of the α2 phase. The islands were bounded by 90°(edge) and 30° screw) Shockley partial dislocations. The 30° partial dislocation cores were localized whereas the 90° partial dislocation cores appeared to be highly delocalized due to presence of a high density of kinks, which in one case was found to be about 0.65nm−1.These results are interpreted in terms of the growth mechanisms and morphology of the α2 phase.


2008 ◽  
Vol 23 (6) ◽  
pp. 1597-1603 ◽  
Author(s):  
Hong-Xian Xie ◽  
Chong-Yu Wang ◽  
Tao Yu

The molecular dynamics method has been used to simulate mode I cracking in Ni3Al. Close attention has been paid to the process of atomic configuration evolution of the cracks. The simulation results show that at low temperature, the Shockley partial dislocations are emitted before the initiation of the crack propagation, subsequently forming the pseudo-twins on (111) planes in crack-tip zone, and then the crack cleavage occurs. The emitting of the Shockley partial dislocations accompanies the crack cleavage during the simulation process. At the higher temperature, the blunting at the crack tip is caused by the [110] superdislocations emitted on (100) plane. The present work also shows that the dipole dislocations on (111) planes in the 1/2[110] dislocation core can be formed.


2000 ◽  
Vol 15 (10) ◽  
pp. 2145-2150 ◽  
Author(s):  
J. X. Zhang ◽  
H. Q. Ye

The structure of γ–α2 interfaces in deformed Ti–48Al–2Cr alloy was analyzed by high-resolution transmission electron microscopy (HREM) and image simulations. Growth of γ–TiAl plate in α2–Ti3Al phase was found to be a result of a ledge mechanism consisting of Shockley partial dislocations on alternate (0001)α2 planes. The height of the ledges was always a multiple of two (0001)α2 planes. The γ → α2 phase transformation was also an interface-related process. Large ledges of six close packed planes (111)γ high were often observed at the γ–α2 interface. Every large ledge consisted of six Shockley partial dislocations that originated from the γ–a2 interfacial lattice misfit. The movement of these partial dislocations accomplished the transformation of γ → α2 phase. Comparing the experimental and simulated HREM image, it was found that atomic reordering appears during the deformation-induced γ↔α2 transformation.


Sign in / Sign up

Export Citation Format

Share Document