scholarly journals Isótopos Estáveis e Química Iônica da Cobertura Glacial da Ilha do Rei George (Shetlands do Sul, Antártica) como Indicadores de Parâmetros Ambientais

2001 ◽  
Vol 28 (2) ◽  
pp. 343
Author(s):  
FRANCISCO ADOLFO FERRON ◽  
RONALDO TORMA BERNARDO ◽  
JEFFERSON CARDIA SIMÕES

Hydrogen and oxygen stable isotopes and anionic concentration (sulphates, chlorides and nitrates) in snow and ice from King George Island are presented. Isotopic and chemical composition are preserved in the uppermost part of the ice cap (first meters) providing informations about some environmental parameters as the origin of precipitation and particles (impurities) e its distribution, atmospheric circulation and the physics processes occurring in the ice pack.

2001 ◽  
Vol 21 (1) ◽  
pp. 21-36 ◽  
Author(s):  
Matthias Braun ◽  
Helmut Saurer ◽  
Steffen Vogt ◽  
Jefferson Cardia Simões ◽  
Hermann Goßmann

Author(s):  
J. BERRY, ◽  
C. COOK, ◽  
T.F. DOMINGUES, ◽  
J. EHLERINGER, ◽  
L. FLANAGAN, ◽  
...  

1985 ◽  
Vol 9 (4) ◽  
pp. 334-339 ◽  
Author(s):  
A. V. Yevseyev ◽  
A. V. Korzun
Keyword(s):  

2021 ◽  
Author(s):  
Louis Honegger ◽  
Thierry Adatte ◽  
Jorge E. Spangenberg ◽  
Miquel Poyatos-Moré ◽  
Alexandre Ortiz ◽  
...  

2017 ◽  
pp. 19
Author(s):  
Casandra Reyes-García ◽  
José Luis Andrade

Stable isotope studies of elements in biological organisms have become a useful tool to assess the exchange of molecules in the biosphere. Since water is one of the most abundant molecules in such an exchange, studies on stable isotopes of hydrogen and oxygen have become a fundamental component of many plant ecophysiological studies, from the leaf level to the reconstruction of past climates. In this review, we mention the most common methodologies, general notation and the most relevant research on hydrogen and oxygen stable isotopes. Also, we discuss studies on plant water sources, leaf isotopic enrichment due to transpiration, the relationship between environment and oxygen stable isotopes in organic matter, and present studies that propose some plant species as environmental indicators in a globally changing world.


2021 ◽  
Vol 15 (3) ◽  
pp. 1383-1397
Author(s):  
Filipe G. L. Lindau ◽  
Jefferson C. Simões ◽  
Barbara Delmonte ◽  
Patrick Ginot ◽  
Giovanni Baccolo ◽  
...  

Abstract. A deeper understanding of past atmospheric circulation variability in the Central Andes is a high-priority topic in paleoclimatology mainly because of the necessity to validate climate models used to predict future precipitation trends and to develop mitigation and/or adaptation strategies for future climate change scenarios in this region. Within this context, we here investigate an 18-year firn core drilled at Nevado Illimani in order to interpret its mineral dust record in relation to seasonal processes, in particular atmospheric circulation and deep convection. The core was dated by annual layer counting based on seasonal oscillations of dust, calcium, and stable isotopes. Geochemical and mineralogical data show that dust is regionally sourced in winter and summer. During austral summer (wet season), an increase in the relative proportion of giant dust particles (∅>20 µm) is observed, in association with oscillations of stable isotope records (δD, δ18O). It seems that at Nevado Illimani both the deposition of dust and the isotopic signature of precipitation are influenced by atmospheric deep convection, which is also related to the total amount of precipitation in the area. This hypothesis is corroborated by regional meteorological data. The interpretation of giant particle and stable isotope records suggests that downdrafts due to convective activity promote turbulent conditions capable of suspending giant particles in the vicinity of Nevado Illimani. Giant particles and stable isotopes, when considered together, can be therefore used as a new proxy for obtaining information about deep convective activity in the past.


2018 ◽  
Vol 15 (21) ◽  
pp. 6399-6415 ◽  
Author(s):  
Daniele Penna ◽  
Luisa Hopp ◽  
Francesca Scandellari ◽  
Scott T. Allen ◽  
Paolo Benettin ◽  
...  

Abstract. In this commentary, we summarize and build upon discussions that emerged during the workshop “Isotope-based studies of water partitioning and plant–soil interactions in forested and agricultural environments” held in San Casciano in Val di Pesa, Italy, in September 2017. Quantifying and understanding how water cycles through the Earth's critical zone is important to provide society and policymakers with the scientific background to manage water resources sustainably, especially considering the ever-increasing worldwide concern about water scarcity. Stable isotopes of hydrogen and oxygen in water have proven to be a powerful tool for tracking water fluxes in the critical zone. However, both mechanistic complexities (e.g. mixing and fractionation processes, heterogeneity of natural systems) and methodological issues (e.g. lack of standard protocols to sample specific compartments, such as soil water and xylem water) limit the application of stable water isotopes in critical-zone science. In this commentary, we examine some of the opportunities and critical challenges of isotope-based ecohydrological applications and outline new perspectives focused on interdisciplinary research opportunities for this important tool in water and environmental science.


Sign in / Sign up

Export Citation Format

Share Document