scholarly journals Chrysotoxine attenuates sevoflurane-induced neurotoxicity in vitro via regulating PI3K/AKT/GSK pathway

2021 ◽  

Objective: The aim of this study is to investigate the neuroprotective effect of chrysotoxine (CTX) on sevoflurane-treated nerve cells and uncover the potential regulation mechanism. Methods: Nerve cells treated with sevoflurane and CTX were subjected to MTT and apoptotic detection. Cell apoptosis and oxidative stress were detected by flow cytometry (FCM) and ELISA assays. In addition, immunoblot assay was performed to study the signaling pathway affected by CTX treatment. Results: CTX treatment promoted the cell viability and suppressed the apoptosis of sevoflurane-treated SH-SY5Y cells. In addition, CTX inhibited the sevoflurane-induced oxidative stress response and inflammatory response in nerve cells. Mechanically, CTX ameliorated neurotoxicity through activating the PI3K/AKT/GSK signaling pathway. Conclusion: Therefore, CTX can serve as a promising drug target for treating anesthetics-induced neurotoxicity.

2021 ◽  
Vol 13 ◽  
Author(s):  
Jia Sun ◽  
Jinzhong Cai ◽  
Junhui Chen ◽  
Siqiaozhi Li ◽  
Xin Liao ◽  
...  

As a severe neurological deficit, intracerebral hemorrhage (ICH) is associated with overwhelming mortality. Subsequent oxidative stress and neurological dysfunction are likely to cause secondary brain injury. Therefore, this study sought to define the role of Krüppel-like factor 6 (KLF6) and underlying mechanism in oxidative stress and neurological dysfunction following ICH. An in vivo model of ICH was established in rats by injection of autologous blood, and an in vitro ICH cell model was developed in hippocampal neurons by oxyhemoglobin (OxyHb) exposure. Next, gain- and loss-of-function assays were performed in vivo and in vitro to clarify the effect of KLF6 on neurological dysfunction and oxidative stress in ICH rats and neuronal apoptosis and mitochondrial reactive oxygen species in OxyHb-induced hippocampal neurons. KLF6, nuclear factor erythroid 2–related factor 2 (Nrf2), and heme oxygenase 1 (HO-1) were highly expressed in hippocampal tissues of ICH rats, whereas sirtuin 5 (SIRT5) presented a poor expression. Mechanistically, KLF6 bound to the SIRT5 promoter and transcriptionally repressed SIRT5 to activate the Nrf2/HO-1 signaling pathway. KLF6 silencing alleviated neurological dysfunction and oxidative stress in ICH rats and diminished oxidative stress and neuronal apoptosis in OxyHb-induced neurons, whereas SIRT5 overexpression negated its effect. To sum up, KLF6 silencing elevated SIRT5 expression to inactivate the Nrf2/HO-1 signaling pathway, thus attenuating oxidative stress and neurological dysfunction after ICH.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu-Qiong He ◽  
Can-Can Zhou ◽  
Jiu-Ling Deng ◽  
Liang Wang ◽  
Wan-Sheng Chen

Acute lung injury (ALI) is a common life-threatening lung disease, which is mostly associated with severe inflammatory responses and oxidative stress. Tanreqing injection (TRQ), a Chinese patent medicine, is clinically used for respiratory-related diseases. However, the effects and action mechanism of TRQ on ALI are still unclear. Recently, STING as a cytoplasmic DNA sensor has been found to be related to the progress of ALI. Here, we showed that TRQ significantly inhibited LPS-induced lung histological change, lung edema, and inflammatory cell infiltration. Moreover, TRQ markedly reduced inflammatory mediators release (TNF-α, IL-6, IL-1β, and IFN-β). Furthermore, TRQ also alleviated oxidative stress, manifested by increased SOD and GSH activities and decreased 4-HNE, MDA, LDH, and ROS activities. In addition, we further found that TRQ significantly prevented cGAS, STING, P-TBK, P-P65, P-IRF3, and P-IκBα expression in ALI mice. And we also confirmed that TRQ could inhibit mtDNA release and suppress signaling pathway mediated by STING in vitro. Importantly, the addition of STING agonist DMXAA dramatically abolished the protective effects of TRQ. Taken together, this study indicated that TRQ alleviated LPS-induced ALI and inhibited inflammatory responses and oxidative stress through STING signaling pathway.


2021 ◽  
Vol 11 (3) ◽  
pp. 351-358
Author(s):  
Kai Yan ◽  
Lin Niu ◽  
Huili Tian ◽  
Fanfan Su ◽  
Yao Chen

Oxidative stress is an important factor affecting retinal ganglion cell (RGC) apoptosis. RGC apoptosis is the main pathophysiological feature of visual impairment as a result of glaucoma. Recently, it has been found that long noncoding RNA (lncRNA) and microRNAs are involved in RGC apoptosis. Here, the function of lncRNA maternally expressed gene 3 (MEG3) and miR-30b in H2 O2-induced RGC proliferation, apoptosis, and oxidative stress was investigated. The expression levels of MEG3 and miR-30b were detected by RT-PCR; the effects of MEG3 and miR-30b on the proliferation and apoptosis of RGCs were observed by flow cytometry; the levels of apoptosis-related proteins and AKT/PI3K signal pathway proteins were detected by protein immunoassay; and the regulation of miR-34a by pvt1 was verified by in vivo and in vitro experiments. The expression of MEG3 and miR-30b increased and decreased significantly in RGCs treated by H2O2. MEG3 expression decreased, apoptosis level-related proteins decreased, the apoptosis rate reduced, and the activity of MDA and SOD decreased. When the expression of miR-34a was inhibited, the proliferation rate of RGCs increased, the apoptosis rate decreased, and the level of apoptosis-related proteins decreased, which reversed MEG3’s effect on RGC apoptosis and proliferation. Furthermore, pvt1 could bind the miR-30b promoter and regulate it with in vitro expression and in vivo expression. Besides, we found that miR-30b can regulate the AKT/PI3K signaling pathway and participate in cell apoptosis and hyperplasia in stress response. LncRNA MEG3 targets miR-30b and regulates the AKT/PI3K signaling pathway on H2 O2-induced cell apoptosis, hyperplasia, and oxidative stress of RGCs.


2021 ◽  
Author(s):  
Yihui Zheng ◽  
Zhenlang Lin ◽  
Luyao Li ◽  
Binwen Chen ◽  
Yu Fang ◽  
...  

Abstract Background: Neonatal hypoxic-ischemic brain injury (HIE) is caused by perinatal asphyxia, which is associated with various confounding factors. Although studies on the pathogenesis and treatment of HIE have matured, sub-hypothermia is the only clinical treatment available for HIE. Previous evidence indicates that chlorogenic acid (CGA) exerts a potential neuroprotective effect on brain injury. However, the role of CGA on neonatal HI brain damage and the exact mechanism remains elusive. Here, we investigate the effects of CGA on HI models in vivo and in vitro and explore the underlying mechanism. Methods: In the in vivo experiment, we ligated the left common carotid artery of 7-day-old rats and placed the rats in a hypoxic box for 2 hours. We did not ligate the common carotid artery of the pups in the sham group since they did not have hypoxia. Brain atrophy and infarct size were evaluated by Nissl staining, HE staining and 2,3,5-triphenyltetrazolium chloride monohydrate (TTC) staining. Morris Water Maze test (MWM) was used to evaluate neurobehavioral disorders. Western-blotting and immunofluorescence were used to detect the cell signaling pathway. Malondialdehyde (MDA) content test, catalase (CAT) activity detection and Elisa Assay was used to detect levels of inflammation and oxidative stress. In vitro experiments were performed on isolated primary neurons.Result: In our study, pretreatment with CGA significantly decreased the infarct volume of neonatal rats after HI, alleviated brain edema, and improved tissue structure in vivo. Moreover, we used the Morris water maze to verify CGA’s effects on enhancing the learning and cognitive ability and helping to maintain the long-term spatial memory after HI injury. However, Sirt1 inhibitor EX-527 partially reversed these therapeutic effects. CGA pretreatment inhibited neuronal apoptosis induced by HI by reducing inflammation and oxidative stress. The findings suggest that CGA potentially activates Sirt1 to regulate the Nrf2-NF-κB signaling pathway by forming complexes thereby protecting primary neurons from oxygen-glucose deprivation (OGD) damage. Also, CGA treatment significantly suppresses HI-induced proliferation of glial.Conclusion: Collectively, this study uncovered the underlying mechanism of CGA on neonatal HI brain damage. CGA holds promise as an effective neuroprotective agent to promote neonatal brain recovery from HI-induced injury.


2021 ◽  
Author(s):  
Shunwu Fan ◽  
Zizheng Chen ◽  
Yizhen Huang ◽  
Yute Yang ◽  
Jinjin Zhu ◽  
...  

Abstract Osteoarthritis (OA) is a common chronic degenerative joint disease associated with a variety of risk factors including aging, genetics, obesity, and mechanical disturbance. This study aimed to elucidate the function of a patient-derived Circular RNA (circRNA), circFNDC3B, in OA progression and its relationship with the NF-κB signaling pathway and oxidative stress. The circFNDC3B/miR-525-5p/HO-1 axis and its relationship with the NF-κB signaling pathway and oxidative stress were investigated and validated using fluorescence in situ hybridization, real-time PCR, western blotting, immunofluorescence analysis, luciferase reporter assays, pull-down assays, and reactive oxygen species analyses. The functions of circFNDC3B in OA was investigated in vitro and in vivo. These evaluations demonstrated that circFNDC3B promotes chondrocyte proliferation and protects the extracellular matrix (ECM) from degradation. We also revealed that circFNDC3B defends against oxidative stress in OA by regulating the circFNDC3B/miR-525-5p/HO-1 axis and the NF-κB signaling pathway. Further, we found that overexpression of circFNDC3B alleviated OA in a rabbit model. In summary, we identified a new circFNDC3B/miR-525-5p/HO-1 signaling pathway that may act to relieve OA by alleviating oxidative stress and regulating the NF-κB pathway, resulting in the protection of the ECM in human chondrocytes, highlighting it as a potential therapeutic target for the treatment of OA.


2021 ◽  
pp. 1-11
Author(s):  
Yupeng Liu ◽  
Hui Wu ◽  
Fan Zhang ◽  
Jun Yang ◽  
Jingchun He

Resveratrol is a non-flavonoid polyphenol compound that exists in many plants, and is considered an antitoxin. This study explores the effects from the regulation of miR-455-5p by resveratrol on cisplatin-induced ototoxicity via the PTEN–PI3K–AKT signaling pathway. For this, House Ear Institute–Organ of Corti 1 (HEI-OC1) cells were transfected with miR-455-5p inhibitor and treated with cisplatin and resveratrol, then cell proliferation, apoptosis, and oxidative stress were evaluated. A mouse model of hearing loss was established, and these mice were treated with cisplatin, resveratrol, or cisplatin combined with resveratrol, by intraperitoneal injection. The auditory brainstem response (ABR) threshold was measured, and hair cells were examined using immunofluorescence staining. The expression levels of miR-455-5p, PTEN, and PI3K/Akt proteins were examined. The results from our in-vitro experiments indicate that resveratrol promoted viability and reduced apoptosis and oxidative stress in cisplatin-induced HEI-OC1 cells. Resveratrol upregulated miR-455-5p, downregulated PTEN, and activated the PI3K–Akt axis. These effects of resveratrol were reversed by knock-down of miR-455-5p. The results from our in-vivo experiments indicate that resveratrol protected hearing and inhibited the hair-cell injury caused by cisplatin ototoxicity. Resveratrol also upregulated miR-455-5p, downregulated PTEN, and activated the PTEN–PI3K–Akt axis in cochlear tissues from cisplatin-treated mice. These results indicate that resveratrol upregulates miR-455-5p to target PTEN and activate the PI3K–Akt signaling pathway to counteract cisplatin ototoxicity.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhangming Lv ◽  
Jiayun Shen ◽  
Xuejiao Gao ◽  
Yonglan Ruan ◽  
Jinying Ling ◽  
...  

Abstract Background Paclitaxel-induced peripheral neuropathy (PIPN) is a challenging clinical problem during chemotherapy. Our previous work found that herbal formula Huangqi Guizhi Wuwu decoction (HGWD) could reduce oxaliplatin-induced neurotoxicity. However, its effect on PIPN remains unknown. In this study, we aim to investigate the therapeutic effect and the underlying mechanisms of HGWD against PIPN with pharmacological experiment and network pharmacology. Methods Male Wistar rats were used to establish an animal model of PIPN and treated with different doses of HGWD for 3 weeks. Mechanical allodynia, thermal hyperalgesia and body weight were measured to evaluate the therapeutic effect of HGWD on PIPN rats. On the day of the sacrifice, blood, DRGs, sciatic nerve, and hind-paw intra-plantar skins were collected to assess neuroprotective effect of HGWD on PIPN. Next, network pharmacology was performed to decipher the potential active components and molecular mechanisms of HGWD, as were further verified by western blotting analyses in PIPN rats. Finally, the effect of HGWD on the chemotherapeutic activity of paclitaxel was evaluated in vitro and in vivo. Results In rats with PIPN, HGWD reversed mechanical allodynia, thermal hyperalgesia, and ameliorated neuronal damage. Moreover, HGWD significantly increased the level of nerve growth factor, dramatically reduced IL-1β, IL-6, TNF-α levels and oxidative stress. Network pharmacology analysis revealed 30 active ingredients in HGWD and 158 candidate targets. Integrated pathway analysis identified PI3K/Akt and toll-like receptor as two main pathways responsible for the neuroprotective effect of HGWD. Further experimental validation demonstrated that HGWD expectedly inhibited the protein expression of TLR4, MyD88, IKKα, and p-NF-κB, and promoted PI3K, p-Akt, Nrf2, and HO-1 level in dorsal root ganglia. Last but not least, HGWD did not interfere with the antitumor activity of paclitaxel both in in vitro and in vivo models. Conclusion These combined data showed that HGWD could inhibit paclitaxel-evoked inflammatory and oxidative responses in peripheral nervous system viaTLR4/NF-κB and PI3K/Akt-Nrf2 pathways involvement. The neuroprotective property of HGWD on PIPN provides fundamental support to the potential application of HGWD for counteracting the side effects of paclitaxel during chemotherapy.


2021 ◽  
Author(s):  
Zhangming Lv ◽  
Jiayun Shen ◽  
Xuejiao Gao ◽  
Yonglan Ruan ◽  
Jinying Ling ◽  
...  

Abstract Background: Paclitaxel-induced peripheral neuropathy (PIPN) is a challenging clinical problem during chemotherapy. Our previous work found that herbal formula Huangqi Guizhi Wuwu decoction (HGWD) could reduce oxaliplatin-induced neurotoxicity. However, its effect on PIPN remains unknown. In this study, we aim to investigate the therapeutic effect and the underlying mechanisms of HGWD against PIPN with pharmacological and network pharmacology.Methods: Male Wistar rats were used to establish an animal model of PIPN and treated with different doses of HGWD for 3 weeks. Mechanical allodynia, thermal hyperalgesia and body weight were measured to evaluate the therapeutic effect of HGWD on PIPN rats. On the day of the sacrifice, blood, DRGs, sciatic nerve, and hind-paw intra-plantar skins were collected to assess neuroprotective effect of HGWD on PIPN. Next, network pharmacology was performed to decipher the potential active components and molecular mechanisms of HGWD, as were further verified by western blotting analyses in PIPN rats. Finally, the effect of HGWD on the chemotherapeutic activity of paclitaxel was evaluated in vitro and in vivo.Results: In rats with PIPN, HGWD reversed mechanical allodynia, thermal hyperalgesia, and ameliorated neuronal damage. Moreover, HGWD significantly increased the level of nerve growth factor, dramatically reduced IL-1β, IL-6, TNF-α levels and oxidative stress. Network pharmacology analysis revealed 30 active ingredients in HGWD and 158 candidate targets. Integrated pathway analysis identified PI3K/Akt and toll-like receptor as two main pathways responsible for the neuroprotective effect of HGWD. Further experimental validation demonstrated that HGWD expectedly inhibited the protein expression of TLR4, MyD88, IKKα, and p-NF-κB, and promoted PI3K, p-Akt, Nrf2, and HO-1 level in dorsal root ganglia. Last but not least, HGWD did not interfere with the antitumor activity of paclitaxel both in in vitro and in vivo models.Conclusion: These combined data showed that HGWD could inhibit paclitaxel-evoked inflammatory and oxidative responses in peripheral nervous system viaTLR4/NF-κB and PI3K/Akt-Nrf2 pathways involvement. The neuroprotective property of HGWD on PIPN provides fundamental support to the potential application of HGWD for counteracting the side effects of paclitaxel during chemotherapy.


2019 ◽  
Author(s):  
Zhanjun Ma ◽  
Yubao Lu ◽  
Fengguang Yang ◽  
Shaoping Li ◽  
Xuegang He ◽  
...  

Abstract Background: Spinal cord injury (SCI) is a severe central nervous system injury for which few efficacious drugs are available. Rosmarinic acid (RA), a water-soluble polyphenolic phytochemical, has antioxidant, anti-inflammatory, and anti-apoptotic properties. However, the effect of RA on SCI is unclear. We investigated the therapeutic effect and underlying mechanism of RA on SCI in vivo and in vitro. Methods: In vivo experiment, The BBB locomotion scale, the inclined plane test, Nissl staining, and spinal cord edema were employed to determine the neuroprotective effects of RA treatment after SCI. Inflammatory and oxidative stress markers were detected by commercial kits and cell apoptosis status was measured by TUNEL staining. A proteomics and bioinformatics approach, together with Western blotting, was used to investigate the effect of RA on the proteome of SCI rats. In vitro experiment, oxidative stress and inflammatory injury were induced by H2O2 and LPS stimulation. Effects of RA on cell viability, apoptosis, inflammatory, and oxidative stress were evaluated. Results: Using a rat model of SCI, we showed that RA improved locomotor recovery after SCI and significantly mitigated neurological deficit, increased neuronal preservation, and reduced apoptosis. Also, RA inhibited activation of microglia and the release of TNF-α, IL-6, and IL-1β and MDA. Moreover, proteomics analyses identified the Nrf2 and NF-κB pathways as targets of RA. Pretreatment with RA increased levels of Nrf2 and HO-1 and reduced those of TLR4 and MyD88 as well as phosphorylation of IkB and subsequent nuclear translocation of NF-κB-p65. Using H2O2- and LPS-induced PC12 cells, we found that RA ameliorated the H2O2-induced decrease in viability and increase in apoptosis and oxidative injury by activating the Nrf2/HO-1 pathway. Also, LPS-induced cytotoxicity and increased apoptosis and inflammatory injury in PC-12 cells were mitigated by RA by inhibiting the TLR4/NF-κB pathway. The Nrf2 inhibitor ML385 weakened the effect of RA on oxidant stress, inflammation and apoptosis in SCI rats, and significantly increased the nuclear translocation of NF-κB. Conclusions: Therefore, the neuroprotective effect on SCI of RA may be due to its antioxidant and anti-inflammatory properties, which are mediated by modulation of the Nrf2/HO-1 and TLR4/NF-κB pathways. Moreover, RA activated Nrf2/HO-1, which amplified its inhibition of the NF-κB pathway.


Sign in / Sign up

Export Citation Format

Share Document