scholarly journals Multifaceted Immune Responses to African Swine Fever Virus: Implications for Vaccine Development

Author(s):  
Tao Wang ◽  
Yuan Sun ◽  
S J Huang ◽  
Hua Ji Qiu
Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1078 ◽  
Author(s):  
Albert Ros-Lucas ◽  
Florencia Correa-Fiz ◽  
Laia Bosch-Camós ◽  
Fernando Rodriguez ◽  
Julio Alonso-Padilla

African swine fever virus is the etiological agent of African swine fever, a transmissible severe hemorrhagic disease that affects pigs, causing massive economic losses. There is neither a treatment nor a vaccine available, and the only method to control its spread is by extensive culling of pigs. So far, classical vaccine development approaches have not yielded sufficiently good results in terms of concomitant safety and efficacy. Nowadays, thanks to advances in genomic and proteomic techniques, a reverse vaccinology strategy can be explored to design alternative vaccine formulations. In this study, ASFV protein sequences were analyzed using an in-house pipeline based on publicly available immunoinformatic tools to identify epitopes of interest for a prospective vaccine ensemble. These included experimentally validated sequences from the Immune Epitope Database, as well as de novo predicted sequences. Experimentally validated and predicted epitopes were prioritized following a series of criteria that included evolutionary conservation, presence in the virulent and currently circulating variant Georgia 2007/1, and lack of identity to either the pig proteome or putative proteins from pig gut microbiota. Following this strategy, 29 B-cell, 14 CD4+ T-cell and 6 CD8+ T-cell epitopes were selected, which represent a starting point to investigating the protective capacity of ASFV epitope-based vaccines.


2021 ◽  
Author(s):  
Vlad Petrovan ◽  
Anusyah Rathakrishnan ◽  
Muneeb Islam ◽  
Lynnette Goatley ◽  
Katy Moffat ◽  
...  

The limited knowledge on the role of many of the approximately 170 proteins encoded by African swine fever virus restricts progress towards vaccine development. In this study we investigated the effect of deleting combinations of different genes from a previously attenuated virus, BeninΔDP148R on: virus replication in macrophages, virus persistence and clinical signs post immunization, and induction of protection against challenge. Deletion of either EP402R or EP153R genes individually or in combination from BeninΔDP148R did not reduce virus replication in vitro. However, deletion of EP402R dramatically reduced viral persistence in vivo, whilst maintaining high levels of protection against challenge. The additional deletion of EP153R (BeninΔDP148RΔEP153RΔEP402R) further attenuated the virus and no viremia or clinical signs were observed post immunization. This was associated with decreased protection and detection of moderate levels of challenge virus in blood. Interestingly, the deletion of EP153R alone from BeninΔDP148R did not result in further virus attenuation and a slight increase in virus genome copies in blood was observed at different times post immunization when compared with BeninΔDP148R. These results show that EP402R and EP153R have a synergistic role in promoting viremia, however EP153R alone does not seem to have a major impact on virus levels in blood.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 625
Author(s):  
Daniel Pérez-Núñez ◽  
Eva Castillo-Rosa ◽  
Gonzalo Vigara-Astillero ◽  
Raquel García-Belmonte ◽  
Carmina Gallardo ◽  
...  

No efficient vaccines exist against African swine fever virus (ASFV), which causes a serious disease in wild boars and domestic pigs that produces great industrial and ecological concerns worldwide. An extensive genetic characterization of the original ASFV stocks used to produce live attenuated vaccine (LAV) prototypes is needed for vaccine biosecurity and control. Here, we sequenced for the first time the Arm/07 stock which was obtained from an infected pig during the Armenia outbreak in 2007, using an improved viral dsDNA purification method together with high coverage analysis. There was unexpected viral heterogeneity within the stock, with two genetically distinct ASFV subpopulations. The first, represented by the Arm/07/CBM/c2 clone, displayed high sequence identity to the updated genotype II Georgia 2007/1, whereas the second (exemplified by clone Arm/07/CBM/c4) displayed a hemadsorbing phenotype and grouped within genotype I based on a central region conserved among all members of this group. Intriguingly, Arm/07/CBM/c4 contained a unique EP402R sequence, produced by a single mutation in the N-terminal region. Importantly, Arm/07/CBM/c4 showed in vitro features of attenuated strains regarding innate immune response pathway. Both Arm/07/CBM/c2 and c4 represent well-characterized viral clones, useful for different molecular and virus-host interaction studies, including virulence studies and vaccine development.


1999 ◽  
Vol 28 (3) ◽  
pp. 187-194 ◽  
Author(s):  
Linda K. Dixon ◽  
Charles C. Abrams ◽  
James E. Miskin ◽  
R. Michael E. Parkhouse

Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 521
Author(s):  
Marek Walczak ◽  
Magdalena Wasiak ◽  
Katarzyna Dudek ◽  
Anna Kycko ◽  
Ewelina Szacawa ◽  
...  

This study aimed to indicate the influence of infection caused by genotype II African swine fever virus (ASFV)–isolate Pol18_28298_O111, currently circulating in Poland, on blood counts, biochemical parameters, as well as inflammatory and immune responses. Blood and sera collected from 21 domestic pigs infected intranasally with different doses of virulent ASFV were analysed. The infection led to variable changes in blood counts depending on the stage of the disease with a tendency towards leukopenia and thrombocytopenia. The elevated C-reactive protein (CRP) concentrations and microscopic lesions in organs confirmed the development of the inflammation process, which also resulted in an increased level of biochemical markers such as: Aspartate transaminase (AST), creatine kinase (CK), creatinine, and urea. Antibodies could be detected from 9 to 18 days post infection (dpi). Two survivors presented the highest titer of antibodies (>5 log10/mL) with a simultaneous increase in the lymphocyte T (CD3+) percentage–revealed by flow cytometry. Results confirmed a progressive inflammatory process occurring during the ASFV infection, which may lead to multiple organs failure and death of the majority of affected animals.


2021 ◽  
Author(s):  
Vlad Petrovan ◽  
Anusyah Rathakrishnan ◽  
Muneeb Islam ◽  
Lynnette C. Goatley ◽  
Katy Moffat ◽  
...  

The limited knowledge on the role of many of the approximately 170 proteins encoded by African swine fever virus restricts progress towards vaccine development. Previously, the DP148R gene was deleted from the genome of genotype I virulent Benin 97/1 isolate. This virus, BeninΔDP148R, induced transient moderate clinical signs after immunization and high levels of protection against challenge. However, the BeninΔDP148R virus and genome persisted in blood over a prolonged period. In the current study deletion of either EP402R or EP153R genes individually or in combination from BeninΔDP148R genome was shown not to reduce virus replication in macrophages in vitro. However, deletion of EP402R dramatically reduced the period of infectious virus persistence in blood in immunized pigs from 28 to 14 days and virus genome from 59 to 14 days, whilst maintaining high levels of protection against challenge. The additional deletion of EP153R (BeninΔDP148RΔEP153RΔEP402R) further attenuated the virus and no viremia or clinical signs were observed post-immunization. This was associated with decreased protection and detection of moderate levels of challenge virus in blood. Interestingly, the deletion of EP153R alone from BeninΔDP148R did not result in further virus attenuation and did not reduce the period of virus persistence in blood. These results show that EP402R and EP153R have a synergistic role in reducing clinical signs and levels of virus in blood. Importance: African swine fever virus (ASFV) causes a disease of domestic pigs and wild boar which results in death of almost all infected animals. The disease has a high economic impact, and no vaccine is available. We investigated the role of two ASFV proteins, called EP402R and EP153R, in determining the levels and length of time virus persists in blood from infected pigs. EP402R causes ASFV particles and infected cells to bind to red blood cells. Deletion of the EP402R gene dramatically reduced virus persistence in blood but did not reduce the level of virus. Deletion of the EP153R alone did not reduce the period or level of virus persistence in blood. However, deleting both EP153R and EP402R resulted in undetectable levels of virus in blood and no clinical signs showing the proteins act synergistically. Importantly the infected pigs were protected following infection with the wildtype virus that kills pigs.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009733
Author(s):  
Jiangnan Li ◽  
Jie Song ◽  
Li Kang ◽  
Li Huang ◽  
Shijun Zhou ◽  
...  

Inflammatory factors and type I interferons (IFNs) are key components of host antiviral innate immune responses, which can be released from the pathogen-infected macrophages. African swine fever virus (ASFV) has developed various strategies to evade host antiviral innate immune responses, including alteration of inflammatory responses and IFNs production. However, the molecular mechanism underlying inhibition of inflammatory responses and IFNs production by ASFV-encoded proteins has not been fully understood. Here we report that ASFV infection only induced low levels of IL-1β and type I IFNs in porcine alveolar macrophages (PAMs), even in the presence of strong inducers such as LPS and poly(dA:dT). Through further exploration, we found that several members of the multigene family 360 (MGF360) and MGF505 strongly inhibited IL-1β maturation and IFN-β promoter activation. Among them, pMGF505-7R had the strongest inhibitory effect. To verify the function of pMGF505-7R in vivo, a recombinant ASFV with deletion of the MGF505-7R gene (ASFV-Δ7R) was constructed and assessed. As we expected, ASFV-Δ7R infection induced higher levels of IL-1β and IFN-β compared with its parental ASFV HLJ/18 strain. ASFV infection-induced IL-1β production was then found to be dependent on TLRs/NF-κB signaling pathway and NLRP3 inflammasome. Furthermore, we demonstrated that pMGF505-7R interacted with IKKα in the IKK complex to inhibit NF-κB activation and bound to NLRP3 to inhibit inflammasome formation, leading to decreased IL-1β production. Moreover, we found that pMGF505-7R interacted with and inhibited the nuclear translocation of IRF3 to block type I IFN production. Importantly, the virulence of ASFV-Δ7R is reduced in piglets compared with its parental ASFV HLJ/18 strain, which may due to induction of higher IL-1β and type I IFN production in vivo. Our findings provide a new clue to understand the functions of ASFV-encoded pMGF505-7R and its role in viral infection-induced pathogenesis, which might help design antiviral agents or live attenuated vaccines to control ASF.


Sign in / Sign up

Export Citation Format

Share Document