scholarly journals Study on drainage layer strategy for improving performance of glass fibrous coalescing filter

Author(s):  
chengwei xu ◽  
chenglong xiao ◽  
Yan yu ◽  
xiaodong si

The drainage layer strategy is a common method for improving filtration performance of coalescing filter. In this study, using the commercial glass fibrous filters, the influence of sub-high efficiency drainage layers on high efficiency coalescing filters were investigated experimentally. The efficiency of coalescing filter slight increases, whereas the total wet pressure drop reduces 0.32 kPa after assembling drainage layer. In addition, the influence of pore size, thickness and wettability on performance were evaluated. While the pore size of drainage layer decrease, the wet pressure drop reduces and quality factor increase. Likewise, the thickness of drainage layer also has positive effect on filtration performance. By contrast, the wettability has a weak affect on the filtration performance. As different coalescing filter with the same drainage layer, the improvement in the filtration performance increase with the decrease of pore size difference between the coalescing and drainage layers.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Si Cheng ◽  
Alam S. M. Muhaiminul ◽  
Zhonghua Yue ◽  
Yan Wang ◽  
Yuanxiang Xiao ◽  
...  

AbstractBy applying the simultaneous corona-temperature treatment, the effect of electret temperature on the structure and filtration properties of melt-blown nonwovens was investigated. Fiber diameter, pore size, thickness, areal weight, porosity, crystallinity, filtration efficiency, and pressure drop were evaluated. The results demonstrated that some changes occurred in the structure of electret fabrics after treatment under different temperatures. In the range of 20°C~105°C, the filtration efficiency of melt-blown nonwovens has a relationship with the change in crystallinity, and the pressure drop increased because of the change in areal weight and porosity. This work may provide a reference for further improving filtration efficiency of melt-blown nonwovens.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2567
Author(s):  
Gaofeng Zheng ◽  
Zungui Shao ◽  
Junyu Chen ◽  
Jiaxin Jiang ◽  
Ping Zhu ◽  
...  

High-performance air filtration was the key to health protection from biological and ultrafine dust pollution. A self-supporting, three-dimensional (3D) nanofibrous membrane with curled pattern was electrospun for the filtration, of which the micro-fluffy structure displayed high-filtration efficiency and low-pressure drop. The flow field in the 3D filtration membrane was simulated to optimize the process parameters to increase the filtration performance. The qualification factor increased from 0.0274 Pa−1 to 0.0309 Pa−1 by 12.77% after the optimization of the electrospinning parameters. The best filtration efficiency and pressure drop were 93.6% and 89.0 Pa, separately. This work provides a new strategy to fabricate 3D structures through the construction of fiber morphology and promotes further improvement of air filtration performance of fibrous filters.


2015 ◽  
Vol 474 ◽  
pp. 175-186 ◽  
Author(s):  
Bastien Pellegrin ◽  
Fernanda Mezzari ◽  
Yamina Hanafi ◽  
Anthony Szymczyk ◽  
Jean-Christophe Remigy ◽  
...  

2019 ◽  
Vol 212 ◽  
pp. 699-708 ◽  
Author(s):  
De-Qiang Chang ◽  
Chi-Yu Tien ◽  
Chien-Yuan Peng ◽  
Min Tang ◽  
Sheng-Chieh Chen

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 949
Author(s):  
Stepan Bazhenov ◽  
Olga Kristavchuk ◽  
Margarita Kostyanaya ◽  
Anton Belogorlov ◽  
Ruslan Ashimov ◽  
...  

A promising solution for the implementation of extraction processes is liquid–liquid membrane contactors. The transfer of the target component from one immiscible liquid to another is carried out inside membrane pores. For the first time, highly asymmetric track-etched membranes made of polyethylene terephthalate (PET) of the same thickness but with different pore diameters (12.5–19 nm on one side and hundreds of nanometers on the other side) were studied in the liquid–liquid membrane contactor. For analysis of the liquid–liquid interface stability, two systems widely diverging in the interfacial tension value were used: water–pentanol and water–hexadecane. The interface stability was investigated depending on the following process parameters: the porous structure, the location of the asymmetric membrane in the contactor, the velocities of liquids, and the pressure drop between them. It was shown that the stability of the interface increases with decreasing pore size. Furthermore, it is preferable to supply the aqueous phase from the side of the asymmetric membrane with the larger pore size. The asymmetry of the porous structure of the membrane makes it possible to increase the range of pressure drop values between the phases by at least two times (from 5 to 10 kPa), which does not lead to mutual dispersion of the liquids. The liquid–liquid contactor based on the asymmetric track-etched membranes allows for the extraction of impurities from the organic phase into the aqueous phase by using a 1% solution of acetone in hexadecane as an example.


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 981 ◽  
Author(s):  
Zexuan Wang ◽  
Kunfeng Zhao ◽  
Bei Xiao ◽  
Peng Gao ◽  
Dannong He ◽  
...  

Monolithic catalysts have great industrial application prospects compared to powdered catalysts due to their low pressure drop, the high efficiency of mass and heat transfer, and recyclability. Deposition of active phases on the monolithic carriers dramatically increases the utilization rate and has been attracting continuous attention. In this paper, we reviewed the traditional (impregnation, coating, and spraying) and novel (hydrothermal and electrodeposition) strategies of surface deposition integration, analyzed the advantages and disadvantages of both ways, and then prospected the possible directions for future development of integration technologies.


2019 ◽  
Vol 6 (3) ◽  
pp. 54-58
Author(s):  
Yao Qian ◽  
Baobao Zhao ◽  
He Bai ◽  
Hui Deng ◽  
Xiaoming Qian

2019 ◽  
Vol 6 (2) ◽  
pp. 156-160
Author(s):  
J. Čech ◽  
L. Prokeš ◽  
M. Zemánek ◽  
L. Dostál ◽  
D. Šimek ◽  
...  

The large-scale plasma treatment of waste gas in industrial or municipal conditions requires high efficiency of plasma conversion process at high processing speed, i.e., large volumetric flow. The integration of the plasma unit into existing systems puts demands on the pipe-system compatibility and minimal pressure drop due to adoption of plasma processing step. These conditions are met at the innovative rotating electrode gliding arc plasma unit described in this article. The system consists of propeller-shaped high voltage electrode inside grounded metallic tube. The design of HV electrode eliminates the pressure drop inside the air system, contrary the plasma unit itself is capable of driving the waste gas at volumetric flow up to 300 m<sup>3</sup>/hr for 20 cm pipe diameter. In the article the first results on pilot study of waste air treatment will be given for selected volatile organic compounds together with basic characteristic of the plasma unit used.


2007 ◽  
Vol 24 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Chang-Byung Song ◽  
Jong-Lyul Lee ◽  
Hyun-Seol Park ◽  
Kyoo-Won Lee

Sign in / Sign up

Export Citation Format

Share Document