scholarly journals Global-scale drivers of ploidy state in aquatic macrophytes

Author(s):  
Tatiana Lobato-de Magalhães ◽  
Kevin Murphy ◽  
Andrey Efremov ◽  
Victor Chepinoga ◽  
Thomas Davidson ◽  
...  

To determine potential drivers of the global distribution of ploidy in aquatic macrophyte species we allocated ploidy state to 1572 species occurring in 238 10 × 10° gridcells worldwide. Analysis of the relationship of 16 global-scale spatial, landscape, environmental, and biotic variables with ploidy state using Boosted Regression Trees revealed temperature variables and evapotranspiration as the strongest predictors. There were contrasting latitudinal patterns between haploid/diploid and polyploid species, while species richness measures also influenced ploidy state. Polyploid species occupied larger geographical ranges than haploid/diploid species. Mixed ploidy species showed the highest latitudinal range size and maximum latitude of species occurrence. Our findings suggest that increased chromosome number is associated with tolerance of a wider range of environmental conditions in macrophyte species. Mixed ploidy could reflect adaptability to expand geographical occurrence via chromosome number change, with such species predominantly occupying a latitude range intermediate between haploid/diploid and polyploid macrophyte dominance.

2021 ◽  
Vol 232 (1) ◽  
Author(s):  
Débora Cristina de Souza ◽  
Ana Carla Fontaneli ◽  
Ana Paula Peron ◽  
Sandro Froehner

2020 ◽  
Author(s):  
E Sebastián-González ◽  
JM Barbosa ◽  
JM Pérez-García ◽  
Z Morales-Reyes ◽  
F Botella ◽  
...  

© 2019 John Wiley & Sons Ltd Understanding the distribution of biodiversity across the Earth is one of the most challenging questions in biology. Much research has been directed at explaining the species latitudinal pattern showing that communities are richer in tropical areas; however, despite decades of research, a general consensus has not yet emerged. In addition, global biodiversity patterns are being rapidly altered by human activities. Here, we aim to describe large-scale patterns of species richness and diversity in terrestrial vertebrate scavenger (carrion-consuming) assemblages, which provide key ecosystem functions and services. We used a worldwide dataset comprising 43 sites, where vertebrate scavenger assemblages were identified using 2,485 carcasses monitored between 1991 and 2018. First, we evaluated how scavenger richness (number of species) and diversity (Shannon diversity index) varied among seasons (cold vs. warm, wet vs. dry). Then, we studied the potential effects of human impact and a set of macroecological variables related to climatic conditions on the scavenger assemblages. Vertebrate scavenger richness ranged from species-poor to species rich assemblages (4–30 species). Both scavenger richness and diversity also showed some seasonal variation. However, in general, climatic variables did not drive latitudinal patterns, as scavenger richness and diversity were not affected by temperature or rainfall. Rainfall seasonality slightly increased the number of species in the community, but its effect was weak. Instead, the human impact index included in our study was the main predictor of scavenger richness. Scavenger assemblages in highly human-impacted areas sustained the smallest number of scavenger species, suggesting human activity may be overriding other macroecological processes in shaping scavenger communities. Our results highlight the effect of human impact at a global scale. As species-rich assemblages tend to be more functional, we warn about possible reductions in ecosystem functions and the services provided by scavengers in human-dominated landscapes in the Anthropocene.


1983 ◽  
Vol 8 ◽  
pp. 101-126 ◽  
Author(s):  
G. Vida ◽  
A. Major ◽  
T. Reichstein

Nine species of "Cheilantoid ferns" are known to grow in Macaronesia and the Mediterranean basin. Two of them (lacking a pseudo-indusium and having the basic chromosome number X = 29), both aggregate species which we prefer to retain in Notholaena, are not included in this study. The other seven species (with distinct pseudo-indusium and the basic chromosome number X = 30), which we accept as members of the genus Cheilanthes Sw. sensu stricto, were subjected to detailed genome analysis of their natural and experimentally produced hybrids and shown to represent an aggregate of four very distinct ancestral diploids and three allotetraploids. The latter must have once been formed by chromosome doubling in the three diploid hybrids of C. maderensis Lowe with the other three diploid species. Theoretically three more allotetraploids would be possible but their formation has obviously been prevented by the geographical separation of the three respective diploids. The most widely distributed of the tetraploids, i.e. C. pteridioides (Reich.) C.Chr. has also been resynthesized from its ancestors (still sympatric) under experimental conditions. The intermediate morphology of the allotetraploids (as compared with their diploid ancestors) is obviously the reason why their status and existence has so long escaped recognition in Europe. These seven species form a natural group and, in our opinion, should not be divided into sections.


1971 ◽  
Vol 13 (4) ◽  
pp. 842-863 ◽  
Author(s):  
S. Ichikawa ◽  
A. H. Sparrow ◽  
C. Frankton ◽  
Anne F. Nauman ◽  
E. B. Smith ◽  
...  

Ninety-one acquisitions of the genus Rumex obtained from various sources were examined taxonomically and cytologically. These acquisitions included 36 species plus 2 unidentified species. The chromosome numbers counted were 2n = 14 (or 15), 16, 18, 20, 40, 42, 60, 80, 100, 120, 140, 160, ca. 170, 180 and ca. 200. The count of 2n = 180 made on one of the R. orbiculatus acquisitions is a new count for this genus, but other acquisitions had 160 and ca. 170. First counts were obtained for four species, R. frutescens (2n = 160), R. crystallinus (2n = 60), R. cristatus (2n = 80) and R. tenax (2n = 80). The count of 2n = 160 for R. frutescens is the highest chromosome number ever reported in the section Axillares. The chromosome numbers determined in R. palustris (2n = 60), R. confertus (2n = 100), R. arcticus (2n = 120) and R. aquaticus (2n = 140) differ from previously published counts. Our counts for eight other species support one of the previous counts where two or more counts are reported. It is shown that the species of the subgenus Acetosa sections Acetosa and Vesicarii and of the subgenus Platypodium have relatively large chromosomes, those of the subgenus Acetosa section Scutati and of the subgenus Acetosella have medium-sized chromosomes, and the members of the subgenus Rumex sections Axillares and Rumex have smaller chromosomes. The chromosomes of the diploid species of the section Rumex were larger than those of the polyploids (4x to 20x) of the same section. Within the section Rumex the log of nuclear volume increased with increasing ploidy, with an abrupt change (decrease) in slope between the 12x and 14x levels.


1983 ◽  
Vol 25 (5) ◽  
pp. 530-539 ◽  
Author(s):  
Jan Dvořák

Data on chromosome pairing in haploids and interspecific hybrids of Solanum, sect. Petota reported in the literature were used to determine whether the diploidlike chromosome pairing that occurs in some of the polyploid species of the section is regulated by the genotype or brought about by some other mechanism. The following trends emerged from these data. Most of the polyploid × polyploid hybrids had high numbers of univalents, which seemed to indicate that the polyploid species were constructed from diverse genomes. Haploids, except for those derived from S. tuberosum, had incomplete chromosome pairing. All hybrids from diploid × diploid crosses had more or less regular chromosome pairing, which suggested that all investigated diploid species have the same genome. Likewise, hybrids from polyploid × diploid crosses had high levels of chromosome pairing. These paradoxical results are best explained if it is assumed that (i) the genotypes of most polyploid species, but not those of the diploid species, suppress heterogenetic pairing, (ii) that nonstructural chromosome differentiation is present among the genomes of both diploid and polyploid species, and (iii) the presence of the genome of a diploid species in a polyploid × diploid hybrid results in promotion of heterogenetic pairing. It is, therefore, concluded that heterogenetic pairing in most of the polyploid species is genetically suppressed.


2009 ◽  
Vol 69 (1) ◽  
pp. 101-108 ◽  
Author(s):  
EB. Pacheco ◽  
CJ. Da-Silva

On the left bank of the Cuibá River, one of the main tributaries of the Pantanal in Mato Grosso, are located the Chacororé and Sinhá Mariana Lakes and the Mutum River, the littoral regions of which are covered with aquatic macrophytes, dominated by the species Eichhornia crassipes and Eichhornia azurea. To examine the ichthyofauna associated with this vegetation, in the year 2003, 3510 fish were collected, distributed among 83 species, and the limnological variables verified near the macrophyte stands where they were sampled. The most abundant and richest order was the Characiformes, followed by the Gymnotiformes and Siluriformes. Analysis of similarity showed a very low, or null, index that the limnological conditions and morphology of the aquatic macrophyte species provide habitat sufficiently homogeneous to give. The limnological conditions and morphology of the aquatic macrophyte species provide a sufficient habitat heterogeneity to give very low, or null, index values. Thus, environmental conservation measures should be more effective in promoting the conservation of the species, given the high levels of biological diversity found in the habitats studied.


Author(s):  
Kateřina Bubíková ◽  
Richard Hrivnák

Individual types of waterbodies are characterised by their specific environmental conditions controlling growth of aquatic macrophytes. We focused on effects of environmental factors on macrophyte species richness in canals, ponds, rivers and streams within Central European region. We employed generalised linear models (GLM) to assess separately overall macrophyte species data and data on wetland species (true aquatic plants and helophytes). No significant difference was revealed by comparing species richness among water body types, though canals were the richest water bodies and streams supported the lowest diversity of macrophytes. The models for all the waterbodies, except streams, contained at least two variables and the explained variability ranged from 37% to 77%. The most recurring variables were the coverage of fine substrate, turbidity, shading by bank and shore trees and shrubs, and altitude. Nevertheless, no obvious pattern of factors was observed for particular water body types. Our study confirmed that aquatic macrophyte species richness is shaped by a complexity of factors and necessity of targeting survey and further generalisation of results not only on one specific water body.


1996 ◽  
Vol 74 (2) ◽  
pp. 299-307 ◽  
Author(s):  
A. Mariani ◽  
F. Pupilli ◽  
O. Calderini

Medicago rugosa and M. scutellata, two annual species of the genus Medicago, have aroused considerable interest because they carry useful traits that could be introduced into alfalfa and have a chromosome number (2n = 30) that is quite unusual in Medicago. A cytogenetic and molecular study was undertaken to investigate the annual diploid species with 2n = 16 and 2n = 14 that seem to be the most closely related to M. rugosa and M. scutellata, with the aim of characterizing these diploid species and determining their genetic relationship with the species with 2n = 30. Karyological analysis established that some of the diploid species investigated were more similar than the others to both M. rugosa and M. scutellata (as in the case of M. intertexta, M. rotata, and M. polymorpha) or at least to one of those two species (as was the case with M. doliata, M. muricoleptis, and M. murex). RFLP analysis identified four species, namely M. intertexta and M. muricoleptis with 2n = 16, and M. polymorpha and M. murex with 2n = 14, as having the highest degree of genetic affinity with the two species with 30 chromosomes. These findings suggest the possibility of identifying the ancestors of M. rugosa and M. scutellata among those four species and therefore of verifying the probable allopolyploid origin of the two species in question. Keywords: Medicago, annual species, karyotypes, RFLPs.


2000 ◽  
Vol 148 (2) ◽  
pp. 233-238 ◽  
Author(s):  
Enrique Martinez-Perez ◽  
Peter J. Shaw ◽  
Graham Moore

Many species exhibit polyploidy. The presence of more than one diploid set of similar chromosomes in polyploids can affect the assortment of homologous chromosomes, resulting in unbalanced gametes. Therefore, a mechanism is required to ensure the correct assortment and segregation of chromosomes for gamete formation. Ploidy has been shown to affect gene expression. We present in this study an example of a major effect on a phenotype induced by ploidy within the Triticeae. We demonstrate that centromeres associate early during anther development in polyploid species. In contrast, centromeres in diploid species only associate at the onset of meiotic prophase. We propose that this mechanism provides a potential route by which chromosomes can start to be sorted before meiosis in polyploids. This explains previous reports indicating that meiotic prophase is shorter in polyploids than in their diploid progenitors. Even artificial polyploids exhibit this phenotype, suggesting that the mechanism must be present in diploids, but only expressed in the presence of more than one diploid set of chromosomes.


1978 ◽  
Vol 20 (1) ◽  
pp. 97-100 ◽  
Author(s):  
David F. Weber

When a monosomic plant of a diploid species undergoes meiosis, two haploid and two nullisomic cells are produced. Zea mays L. microspore quartet cells nullisomic for chromosome number 1, 2, 4, 6, 7, 8, 9, or 10 produced by monosomics were analyzed. Cells nullisomic for chromosome 6, as expected, do not contain a nucleolus because chromosome 6 bears the nucleolar organizing region. Cells nullisomic for chromosome 2 contain nucleoli; therefore, the 5S rRNA template on chromosome 2 is not necessary for nucleolar formation. Cells nullisomic for chromosomes 1, 4, 7, 8, 9, or 10 also contain nucleoli; thus, no factors located on these chromosomes are necessary for nulceolar formation at the quartet stage.


Sign in / Sign up

Export Citation Format

Share Document