scholarly journals Fatigue assessment of welded joints using multiaxial fatigue space theory with nominal stress approach

Author(s):  
Chun Lu ◽  
Jiliang Mo ◽  
Hongqin Liang

Welded joints are widely employed in engineering field and they are always the starting points of fatigue damage. Because of the unfavorable material and geometry characters, as well as initial welding defects, the fatigue damage evaluation of welded joints is an important and troublesome issue for engineers. In this article, multiaxial fatigue space theory proposed by the first author for smooth specimens is extended for the fatigue damage assessment of welded joints, by adopting nominal stress approach. The fatigue test data with different materials, loading paths, and welded joints geometries are used to validate the capability of this theory. The result indicates a strong parallelization between predicted life and experimental life, with a favorable prediction error and beneficial error distribution. It can be concluded that multiaxial fatigue space theory is a useful method for fatigue damage assessment of welded joints with the help of nominal stress approach.

2020 ◽  
Vol 87 (11) ◽  
Author(s):  
Kurthan Kersch ◽  
Elmar Woschke

Abstract This work proposes a new method for the fatigue damage evaluation of vibrational loads, based on preceding investigations on the relationship between stresses and modal velocities. As a first step, the influence of the geometry on the particular relationship is studied. Therefore, an analytic expression for Euler Bernoulli beams with a non-constant cross section is derived. Afterward, a general method for obtaining geometric factors from finite element (FE) models is proposed. In order to ensure a fast fatigue damage evaluation, strongly simplified FE-models are used for the determination of both factors and measurement locations. The entire method is demonstrated on three mechanical structures and indicates a better compromise between effort and accuracy than existing methods. For all examples, the usage of velocities and geometric factors obtained from simplified FE models enables a sufficient fatigue damage calculation.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1768
Author(s):  
Lizhen Huang ◽  
Weilian Qu ◽  
Ernian Zhao

The multiaxial fatigue critical plane method can be used to evaluate the extremely-low-cycle fatigue (ELCF) damage of beam-to-column welded joints in steel frameworks subjected to strong seismic activity. In this paper, fatigue damage models using structural detail parameters are studied. Firstly, the fatigue properties obtained from experiments are adopted to assess ELCF life for steel frameworks. In these experiments, two types of welded specimens, namely, plate butt weld (PB) and cruciform load-carrying groove weld (CLG), are designed according to the structural details of steel beam and box column joints, in which both structural details and welded factors are taken into account. Secondly, experiments are performed on three full-scale steel welded beam-to-column joints to determine the contribution of stress and/or strain to damage parameters. Finally, we introduce a modification of the most popular fatigue damage model of Fatemi and Socie (FS), modified by us in a previous study, for damage evaluation, and compare this with Shang and Wang (SW) in order to examine the applicability of the fatigue properties of PB and CLG. This study shows that the modified FS model using the fatigue properties of CLG can predict the crack initiation life and evaluate the damage of beam-to-column welded joints, and can be subsequently used for further investigation of the damage evolution law.


Sign in / Sign up

Export Citation Format

Share Document